




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学第二学期第二十章一次函数专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数ymxn(m,n为常数)的图象如图所示,则不等式mxn0的解集是( )Ax2Bx2Cx3Dx32、甲、乙两
2、名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:甲的速度为40千米/时;乙的速度始终为50千米/时;行驶1小时时,乙在甲前10千米处;甲、乙两名运动员相距5千米时,t =05或t =2或t =4,其中正确的是( )ABCD3、如图,一次函数y=-2x+8与反比例函数的图象交于,两点则使成立的x的取值范围是()Ax3C1x3D0 x34、下列函数中,是一次函数的是( )ABCD5、若直线ykx+b经过第一、二、三象限,则函数ybxk的大致图象是()ABCD6、对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运
3、动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5)已知点A的坐标为(2,0),点Q是直线l上的一点,点A关于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A经n次斜平移后得到,且点C的坐标为(8,6),则ABC的面积是()A12B14C16D187、函数yx1的图象经过()A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限8、已知一次函数y(12m)x3中,函数值y随自变量x的增大而减小,那么m的取值范围是( )AmBmCmDm9、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为()A2B-1C-2D410、若一次函数(,为常
4、数,)的图象不经过第三象限,那么,应满足的条件是( )A且B且C且D且第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,直线交y轴于点A(0,2),交x轴于点B,直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上且在第一象限一动点若是等腰三角形,点P的坐标是_2、已知直线yax1与直线y=2x+1平行,则直线yax1不经过第 _象限3、已知一次函数的图象与两坐标轴围成的三角形面积为4,则_4、如图,函数和的图象相交于,则不等式的解集为_5、已知直线yx+2与直线y2x+4相交于点A,与x轴分别交于B,C两点,若点D(m,2m+1)落在A
5、BC内部(不含边界),则m的取值范围是 _三、解答题(5小题,每小题10分,共计50分)1、已知等边OAB,边长为8,点A在y轴上,点B在第一象限,反比例函数(x0)经过AB的中点M,与OB边相交于点N(1)求k的值;(2)连接OM、MN,求OMN的面积2、已知是x的正比例函数,且当时,y=2(1)请求出y与x的函数表达式;(2)当x为何值时,函数值y=4;3、某商店计划购进篮球和排球共100个进行销售若购进3个篮球和2个排球需要390元:购进2个篮球和1个排球需要240元该商店计划篮球每个110元,排球每个75元进行销售(1)求篮球和排球的进货单价;(2)若购进篮球m个(),且篮球和排球全部
6、售出,求该商店获得的最少利润4、已知,一次函数(1)若这个一次函数的图像经过原点,求a的值;(2)若这个一次函数的图像与y轴交于点,且y的值随x的增大而减小,求a的值5、已知函数y2,当x2时,y则:(1)当x2时,y ;根据x2时y的表达式,补全表格、如图的函数图象x21012y0.51.5(2)观察(1)的图象,该函数有最 值(填“大”或“小”),是 ,你发现该函数还具有的性质是 (写出一条即可);(3)在如图的平面直角坐标系中,画出yx的图象,并指出2|x1|x时,x的取值范围-参考答案-一、单选题1、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答【详解】由图象
7、知:不等式的解集为x3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键2、D【分析】分析图像上每一段表示的实际意义,再根据行程问题计算即可【详解】甲的速度为,故正确;时,已的速度为,后,乙的速度为,故错误;行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;由得:甲的函数表达式为:,已的函数表达为:时,时,时,甲、乙两名运动员相距,时,甲、乙两名运动员相距,时,甲、乙两名运动员相距为,故正确故选:D【点睛】本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解3、D【分析】解方程组,确定图像的交点,找到交点
8、的横坐标,观察函数图象得到一次函数的图象在反比例函数图象下方的自变量取值范围【详解】,整理,得,解得,在第一象限内,一次函数值小于反比例函数值时自变量x的取值范围是或;故选:D【点睛】本题考查了一次函数与反比例函数的交点问题,方程组的解法,不等式,准确确定图像的交点坐标,运用数形结合思想确定不等式的解集是解题的关键4、B【分析】根据一次函数的定义解答即可【详解】解:A、自变量次数为,故是二次函数;B、自变量次数为,是一次函数;C、分母中含有未知数,故是反比例函数;D、分母中含有未知数,不是一次函数故选:B【点睛】本题考查一次函数的定义,一次函数的定义条件是:、为常数,自变量次数为5、D【分析】
9、直线ykx+b,当时,图象经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限【详解】解:直线ykx+b经过第一、二、三象限,则,时,函数ybxk的图象经过第一、三、四象限,故选:D【点睛】本题考查一次函数的图象与性质,是重要考点,掌握相关知识是解题关键6、A【分析】连接CQ,根据中心和轴对称的性质和直角三角形的判定得到ACB90,延长BC交x轴于点E,过C点作CFAE于点F,根据待定系数法得出直线的解析式进而解答即可【详解】解:连接CQ,如图:由中心对称可知,AQBQ,由轴对称可知:BQCQ,AQCQBQ,QACACQ,QBCQ
10、CB,QAC+ACQ+QBC+QCB180,ACQ+QCB90,ACB90,ABC是直角三角形,延长BC交x轴于点E,过C点作CFAE于点F,如图,A(2,0),C(8,6),AFCF6,ACF是等腰直角三角形,AEC45,E点坐标为(14,0),设直线BE的解析式为ykx+b,C,E点在直线上,可得:,解得:,yx+14,点B由点A经n次斜平移得到,点B(n+2,2n),由2nn2+14,解得:n4,B(6,8),ABC的面积SABESACE12812612,故选:A【点睛】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,得到的坐标是解本题的关键7、D【分
11、析】根据一次函数的图象特点即可得【详解】解:一次函数的一次项系数为,常数项为,此函数的图象经过第一、三、四象限,故选:D【点睛】本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键8、C【分析】利用一次函数的参数的正负与函数增减性的关系,即可求出m的取值范围【详解】解:函数值y随自变量x的增大而减小,那么1+2m0,解得m故选:C【点睛】本题主要是考查了一次函数的值与函数增减性的关系,一次函数为减函数,一次函数为增函数,掌握两者之间的关系,是解决该题的关键9、C【分析】首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3
12、-4,进而得到3k+3=k+3-4,再解方程即可【详解】解:由题意得:x=1时,y=k+3,在x=1处,自变量增加2,函数值相应减少4,x=3时,函数值是k+3-4,3k+3=k+3-4,解得:k=-2,故选C【点睛】此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值10、D【分析】根据一次函数图象与系数的关系解答即可【详解】解:一次函数、是常数,的图象不经过第三象限,且,故选:D【点睛】本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k0时,直线必经过一、三象限k0时,直线必经过二、四象限b0时,直线与y轴正半轴相交
13、b=0时,直线过原点;b0时,直线与y轴负半轴相交二、填空题1、,【分析】利用分类讨论的思想方法分三种情形讨论解答:,依据题意画出图形,利用勾股定理和轴对称的性质解答即可得出结论【详解】交轴于点,令,则,直线垂直平分交于点,交轴于点,点的横坐标为1时,如图,过点作交轴于点,则,同理,当时,如图,点在的垂直平分线上,点的纵坐标为1,当时,则,如图,综上,若是等腰三角形,点的坐标是或或或故答案为:或或或【点睛】本题主要考查了一次函数图象的性质,一次函数图象上点的坐标的特征,等腰三角形的性质,勾股定理,线段垂直平分线的性质,利用分类讨论的思想方法解答是解题的关键2、二【分析】根据两直线平行一次项系数
14、相等,求出a,即可判断yax1经过的象限【详解】解:直线yax1与直线y=2x+1平行, a=2,直线yax1的解析式为y2x1直线y2x1 ,经过一、三、四象限,不经过第二象限;故答案为:二【点睛】本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键3、2或-2【分析】由函数解析式确定与x轴的交点坐标为,与y轴的交点坐标为(0,4),然后根据函数图象与坐标轴的面积为4列出方程求解即可【详解】解:在中,当时,;当时,的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:故答案为:2或-2【点睛】题目主要考查一次函数解析式的确定及其与坐标轴围成
15、面积的计算方法,理解题意,得出方程是解题关键4、【分析】观察函数图象得到,当时,直线都在直线的下方,于是可得到不等式的解集【详解】解:由图象可知,在点A左侧,直线的函数图像都在直线的函数图像得到下方,即当时,不等式的解集为,故答案为:【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合5、【分析】若点D(m,2m+1)落在ABC内部(不含边界),则D点在两条直线的下方同时在x轴上方,可列出不等
16、式组求解【详解】解:点D(m,2m+1)落在ABC内部(不含边界),D点在两条直线的下方同时在x轴上方,列不等式组,解得:,故答案为:【点睛】本题主要考查了一次函数图象与一元一次不等式的综合应用,准确计算是解题的关键三、解答题1、(1)123;(2)12【分析】(1)根据等边三角形的性质,和M是AB的中点,通过作垂线构造直角三角形可求出点M的坐标,进而确定k的值,(2)求出点B的坐标,进而求出直线OB的关系式,在求出交点N的坐标,即可求出三角形OMN 的面积,【详解】解:(1)作MHAO于点H在等边三角形OAB中,AB8,点M是AB的中点MAH60,AM4AH2, MH23 OA8OH826,
17、点M(23,6) k=123 (2)作NFx轴于点F 因NOF30,不妨设点N(3m,m)点N在反比例函数图像上3mm=123 m=23,m=-23(舍)N(6,23), ON43 由等边三角形“三线合一”性质得到OM平分AOB再由角平分线的性质知,点M到OB的距离等于MH,即为23 SOMN=12ONMH=12 【点睛】考查等边三角形的性质、一次函数、反比例函数的图象和性质,角平分线的性质,正确求出点的坐标和函数的关系式是解决问题的关键2、(1)y=-x +1;(2)x=-3时,y=4【分析】(1)根据正比例函数的定义,形如y=kx列出函数表达式,代入数值求得k,进而求得表达式;(2)根据y
18、的值代入(1),即可求得x的值【详解】解:(1)y-1是x的正比例函数,y-1=kx当x=-1时,y=22-1=-k解得k=-1表达式为:y-1=-x即(2)由,令y=4即4=-x+1解得x=-3x=-3时,y=4【点睛】本题考查了正比例函数的定义,求一次函数解析式,已知函数值求自变量的值,掌握正比函数的定义是解题的关键3、(1)篮球的进货单价为90元,排球进货单价为60元;(2)商店获得最少利润是1750元【分析】(1)设篮球的进货单价为x元,排球进货单价为y元,根据“若购进3个篮球和2个排球需要390元:购进2个篮球和1个排球需要240元”列出方程组求解;(2)设总利润w元,根据题意用m表示w,结合m的取值范围,即可得出该商店获得的最少利润【详解】(1)解:设篮球的进货单价为x元,排球进货单价为y元,3x+2y=3902x+y=240,x=90y=60,答:篮球的进货单价为90元,排球进货单价为60元;(2)设该商店获得利润是w元,w=110-90m+75-60100-m=5m+1500,k=50,w随m的增大而增大,50m65,当m=50时,w最小=505+1500=1750,答:商店获得最少利润是1750元【点睛】本题考查了一次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《论文写作基础教程》课件
- 《品牌构建与养成》课件
- 铁路旅客运输服务铁路旅客运输服务质量问题的处理课件
- 双语客运值班员误乘的办理课件
- 曝气管更换施工方案
- 铁路市场营销铁路货运产品市场定位课件
- 抚州轻钢别墅施工方案
- 顺序起动联锁控制课件
- 中国人真厉害课件视频
- 中国与联合国关系
- 平面构成课件完整版本
- 招商银行智慧营销体系规划方案((2022年-2023年)-2022)
- 稳定性试验方案
- 综合楼十项新技术应用汇报总结
- 安徽医大麻醉学课件04全身麻醉
- 2022年上海市工业技术学校教师招聘笔试题库及答案解析
- 《城镇燃气管理条例题库》考试题库150题(含答案)
- 工程项目施工过程中的安全分析报告(建设单位)
- 微机保护原理课件
- 国内外饮料灌装生产线发展现状
- 广西水功能区划报告-广西水利信息网
评论
0/150
提交评论