2022年最新沪科版七年级数学下册第9章-分式专项测评练习题(无超纲)_第1页
2022年最新沪科版七年级数学下册第9章-分式专项测评练习题(无超纲)_第2页
2022年最新沪科版七年级数学下册第9章-分式专项测评练习题(无超纲)_第3页
2022年最新沪科版七年级数学下册第9章-分式专项测评练习题(无超纲)_第4页
2022年最新沪科版七年级数学下册第9章-分式专项测评练习题(无超纲)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、沪科版七年级数学下册第9章 分式专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某生产厂家更新技术后,平均每天比更新技术前多生产3万件产品,现在生产50万件产品与更新技术前生产40万件产品所需时间

2、相同,设更新技术前每天生产产品x万件,则可以列方程为()ABCD2、某企业车间生产一种零件,3位工人同时生产,1位工人恰好能完成组装,若车间共有工人60人,如何分配工人才能使生产的零件及时组装好设分配x名工人生产,由题意列方程,下列选项错误的是( )Ax+3x=60BCDx=3(60-x)3、已知代数式的值为0,则的值为( )ABCD4、若正整数m使关于x的分式方程的解为正数,则符合条件的m的个数是( )A2B3C4D55、下列是最简分式的是( )ABCD6、若分式有意义,则的取值范围是( )Aa2Ba0Ca2Da27、若关于x的一元一次不等式组的解集为,且关于x的分式方程有非负整数解,则所有

3、满足条件的整数a的值之和是( )ABCD8、已知分式的值为,如果把分式中的同时扩大为原来的3倍,那么新得到的分式的值为( )ABCD9、在代数式,中,分式的个数为( )A2B3C4D510、 “绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务设原计划工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、代数式与代数式的值相等,则列等式为 _,解得x_2、甲、乙二人从同一地点同时出发沿相同路线去往同

4、一目的地,甲一半路程以速度a行驶,一半路程以速度b行驶;乙一半时间以速度a行驶,一半时间以速度b行驶,问谁先到达目的地?()下列结论:甲先到;乙先到;甲、乙同时到达;无法判断其中正确的结论是_ (只需填入序号)3、开学在即,由于新冠疫情学校决定共用8000元分两次购进口罩6000个免费发放给学生若两次购买口罩的费用相同,且第一次购买口罩的单价是第二次购买口罩单价的1.5倍,则第二次购买口罩的单价是 _元4、若,则的值为_5、使分式有意义的x的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、人工智能在物流行业有广泛的应用,其中自主移动机器人可以实现高效的搬运和拣货作业. 某物流园区

5、利用A,B两种自主移动机器人搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运750kg所用时间与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?2、列方程解应用题某工程队承担了750米长的道路改造任务,工程队在施工完210米道路后,引进了新设备,每天的工作效率比原来提高了20,结果共用22天完成了任务求引进新设备前工程队每天改造道路多少米?3、已知,求代数式的值4、(1)计算:(2)计算:(3)先化简,再求值:,其中(4)解方程:5、北京市以年冬奥会和冬残奥会为契机,大力提升城市服务保障能力,在永定河沿岸,紧邻北京冬奥组委和首钢滑雪大跳台建成

6、冬奥公园冬奥公园最大的亮点是拥有一条长全封闭的马拉松跑道马拉松线路设计很有创意,分为智慧跑、公园跑、滨水跑和堤上跑小明先进行了智慧跑,接着进行了堤上跑,共用时分钟已知小明在堤上跑路段的平均速度是他在智慧跑路段的平均速度的倍,求小明在进行智慧跑和堤上跑时的平均速度-参考答案-一、单选题1、A【分析】更新技术前每天生产产品x万件,可得更新技术后每天生产产品(x+3)万件根据现在生产50万件产品与更新技术前生产40万件产品所需时间相同列出方程即可【详解】解:更新技术前每天生产产品x万件,更新技术后每天生产产品(x+3)万件依题意得故选:A【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方

7、法与步骤,抓住等量关系列出方程是解题关键2、A【分析】设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,根据生产工人数和组装工人数的倍数关系,可列方程【详解】解:设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,由3位工人生产,1位工人恰好能完成组装,可得:x=3(60-x) 故D正确;将两边同时除以3得:60-x=x,则B正确;将两边同时除以3x得:=,则C正确;A选项中,x为生产工人数,而生产工人数是组装工人数的3倍,而不是相反,故A错误综上,只有A不正确故选:A【点睛】本题考查了由实际问题抽象出一元一次方程,明确题中的数量关系,是解题的关键3、C【分析】根据分

8、式值为零的条件列出方程和不等式,再求解即可【详解】代数式的值为0, ,且且故选:C【点睛】本题考查分式值为零的条件,熟练掌握该知识点是解题关键4、A【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围,进而可求解【详解】解:去分母得:m=x(x-1)-(x-2)(x+2),即m=4-x,解得x=4-m,由x为正数且(x-1)(x+2)0可得:4-m0且m6或3,解得:m4且m3,m为正整数,m的值为1,2共2个数故选:A【点睛】本题考查了分式方程的解,由于我们的目的是求m的取值范围,求得x=4-m,即可列出关于m的不等式了,另外,解答本题时,易漏掉(x-1)

9、(x+2)0,这个隐含的条件而造成的,这应引起同学们的足够重视5、C【详解】解:A、,不是最简分式,此项不符题意;B、,不是最简分式,此项不符题意;C、是最简分式,此项符合题意;D、,不是最简分式,此项不符题意;故选:C【点睛】本题考查了最简分式,熟记最简分式的定义(分子与分母没有公因式的分式,叫做最简分式)是解题关键6、A【分析】根据分式的分母不能为0即可得【详解】解:由题意得:,解得,故选:A【点睛】本题考查了分式有意义的条件,掌握理解分式的分母不能为0是解题关键7、B【分析】先解不等式组根据解集,求出得a的范围,再解分式方程,根据非负整数解,求出a的值即可求解【详解】解一元一次不等式组得

10、元一次不等式组的解集为,即解关于x的分式方程得分式方程有非负整数解,或或或,解得或或或,或或故选:B【点睛】本题考查分式方程、一元一次不等式组,熟练掌握分式方程、一元一次不等式组的解法,注意分式方程增根的情况是解题的关键8、C【分析】直接利用分式的基本性质进而化简得出答案【详解】解:把分式中的都扩大为原来的3倍,则分式,故选:C【点睛】本题主要考查了分式的基本性质,解题的关键是正确化简分式9、A【分析】根据分式的定义解答即可【详解】解: 、 的分母中含字母,是分式, 、 、的分母中不含字母,不是分式,故选:A【点睛】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是

11、分式,如果不含有字母则不是分式,注意不是字母,是常数,所以分母中含的代数式不是分式,是整式10、A【分析】设原计划工作时每天绿化的面积为x万平方米,则实际每天绿化的面积为万平方米,根据题意,得,选择即可【详解】设原计划工作时每天绿化的面积为x万平方米,则实际每天绿化的面积为万平方米,根据题意,得,故选A【点睛】本题考查了分式方程的应用题,准确找到等量关系是解题的关键二、填空题1、 -1 【分析】根据题意列出分式方程,求出分式方程的解即可得到x的值【详解】解:根据题意得:=,去分母得:2(x-2)=3(x-1),去括号得:2x-4=3x-3,解得:x=-1,检验:把x=-1代入得:(x-1)(x

12、-2)0,分式方程的解为x=-1故答案为:,-1【点睛】此题考查了解分式方程,熟练掌握分式方程的解法是解本题的关键2、【分析】不妨设两地的路程为1,甲走完全程用的时间为m,乙走完全程用的时间为n,由路程速度时间,得甲车到达指定地点的时间为,乙车到达指定地点的时间为;比较甲,乙的大小即可【详解】解:设总路程为1,甲走完全程用的时间为m,乙走完全程用的时间为n,甲:,乙:,整理得 ,甲到达用的时间更多,所以乙先到故答案为:【点睛】本题考查了分式加减运算的实际应用,找到合适的等量关系是解决问题的关键本题是一道考查行程问题的应用题,解此类问题只要把握住路程速度时间,即可找出等量关系,列出方程要注意找出

13、题中隐含的条件,如本题甲乙二人相同的行驶路程3、【分析】设第二次购买口罩的单价是x元,则第一次购买口罩的单价是1.5x元,根据两次购买口罩的费用相同,两次购进口罩6000个,列出方程求解即可【详解】解:800024000(元)设第二次购买口罩的单价是x元,则第一次购买口罩的单价是1.5x元,依题意得:+6000, 解得:x,经检验,x是原方程的解,且符合题意故答案为:【点睛】本题考查了分式方程的应用,解题关键是准确把握题目中的数量关系,找出等量关系列方程4、【分析】由题意根据分式的基本性质对分式进行化简,进而代入计算即可得出答案.【详解】解:,可得,所以.故答案为:.【点睛】本题考查分式的化简

14、求值,熟练掌握并利用分式的基本性质对分式进行化简以及倒数的性质是解题的关键.5、【分析】根据分式有意义的条件,列出不等式,进而即可求解【详解】解:由题意得:x-10,故答案是:【点睛】本题主要考查分式有意义的条件,掌握分式的分母不等于0,是解题的关键三、解答题1、A型机器人每小时搬运150 kg化工原料,B型机器人每小时搬运120 kg化工原料【分析】设B型机器人每小时搬运x kg化工原料,则A,B两种自主移动机器人完成各自工作的工作时间为小时,小时,再利用时间相等建立方程,再解方程即可.【详解】解:设B型机器人每小时搬运x kg化工原料 根据题意,得. 解得 经检验,是原分式方程的解,且符合

15、题意. 答:A型机器人每小时搬运150 kg化工原料,B型机器人每小时搬运120 kg化工原料.【点睛】本题考查的是分式方程的应用,准确的表示A,B两种自主移动机器人搬运化工原料的工作时间是解本题的关键.2、30米【分析】设引进新设备前工程队每天建造道路米,则引进新设备后工程队每天改造米,利用工作时间工作总量工作效率,结合共用22天完成了任务,即可得出关于的分式方程,解之经检验后即可得出结论【详解】解:设引进新设备前工程队每天建造道路米,则引进新设备后工程队每天改造米,依题意得:,解得:,经检验,是所列方程的解,且符合题意答:引进新设备前工程队每天建造道路30米【点睛】本题考查了分式方程的应用

16、,解题的关键是找准等量关系,正确列出分式方程3、,【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将的值代入计算即可求出值【详解】解:,当时,【点睛】本题考查了分式的化简求值,二次根式的化简,解题的关键是熟练掌握运算法则4、(1);(2)22;(3),;(4)2【分析】(1)先根据立方根、算术平方根、绝对值、零次幂的知识化简,然后再计算即可;(2)先运用二次根式的乘方法则和平方差公式计算,然后再运用二次根式的加减运算法则计算即可;(3)先运用分式的四则混合运算法则化简,然后代入计算即可;(4)按照解分式方程的步骤解答即可【详解】解:(1)=;(2)=22;(3)=当;(4)x(x+1)-(x+1)(x-1)=3(x-1)x2+x-x2+1=3x-3-2x=-4x=2经检验x=2是分式方程的解【点睛】本题主要考查了实数的运算、分式的化简求值、解分式方程等知识点,灵活运用相关运算法则成为解答本题的关键5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论