乳酸杆菌水中发酵产生胞外多糖的研究和建模(共13页)_第1页
乳酸杆菌水中发酵产生胞外多糖的研究和建模(共13页)_第2页
乳酸杆菌水中发酵产生胞外多糖的研究和建模(共13页)_第3页
乳酸杆菌水中发酵产生胞外多糖的研究和建模(共13页)_第4页
乳酸杆菌水中发酵产生胞外多糖的研究和建模(共13页)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、乳酸杆菌水中发酵(f jio)产生(chnshng)胞外多糖的研究(ynji)和建模原文来源:Carbohydrate Polymers 114 (2014) 4347 K. Thirugnanasambandham, V. Sivakumar , J. Prakash MaranDepartment of Food Technology, Kongu Engineering College, Perundurai, Erode 638052, Tamil Nadu, India摘 要现阶段研究的主要目标是调查和优化水中发酵过程的参数,比如用乳酸杆菌生产细胞外多糖和其他生物质产物用乳酸杆菌生产

2、其他用乳酸杆菌生产其他过程中椰子汁的添加量,氯化钠的剂量、培养温度和时间等。在水中发酵过程的建模中应用了结合了四种三级响应曲面设计的响应面法。响应面法表明了实验与预测价值的良好对应关系。研究水中发酵过程中变量的交互式影响还用到了3d响应面图。对使胞外多糖和其他生物质产物产量最大的最佳条件如下:添加40%的椰子汁,氯化钠剂量为15%,培养时间为24小时,温度为35摄氏度。在这些条件下会产生10.57g/l的胞外多糖和3.9g/l的生物质。关键词胞外多糖;水下发酵;乳杆菌属;响应曲面设计;优化1 介绍(jisho)目前(mqin),食品级生产胞外多糖(EPS)是人们话题(hut)。他们在各个领域由

3、于其抗肿瘤,抗癌,抗溃疡,增强免疫力,降低胆固醇的能力(De Vuyst, De Vin, Vaningelgem, & Degeest, 2001)具有极高潜能。发酵是生物转化的复杂的基质成简单的化合物的各种微生物如细菌和真菌的方法。此外,它可以分为两个主要方面如下;固态发酵(SSF)和液体深层发酵(SMF)。相比SSF,SMF更易操作且效率更高。这是最适合于如细菌等需要高湿度含量的微生物的技术。这种技术的一个附加的好处是净化最终产品更容易。更近几年,SMF使用乳酸菌(LAB)在生物技术领域产生具有生物活性的胞外多糖已经很引人注意。乳杆菌TISTR 1498 的EPS只含有葡萄糖,表明均聚糖

4、类合成葡聚糖,它可能在药物,保健,化妆品和食品工业等具有潜力((Duenas, Munduate, Perea, & Irastorza, 2003)。此外,调节SMF过程中的条件如,椰子水,氯化钠浓度,培养时间和温度会显著影响过程的效率。它的最优化将可以得出一通过合理的操作成本产生最大活性性EPS的方法(Thirugnanasambandham, Sivakumar, & Prakash Maran, 2014a)。RSM是一个特定的数学和统计方法的研究,用于帮助在某些问题的解决一定的类型,这是科学的相关过程。然而,据我们所知,SMF不能用于利用L.亚种经由RSM产生EPS的过程。因此,本研

5、究的目的是估计在一些SMF条件影响下,如椰子水,加入NaCl剂量,培养时间和温度利用L.亚种经由RSM产生EPS和生物质的产量。2 实验材料与方法2.1 材料与化学当地供应商(Erode, Tamil Nadu)提供的中型L. confuses TISTR 1498菌株2.2. 发酵过程在SMF工艺中,对含有100毫升培养基的锥形瓶进行冷冻培养。对制备的微生物接种,10%的菌株被转移到另一个含有100毫升培养基的250毫升锥形瓶,并培养在3524小时直到达到光密度(OD)0.8,650 nm。10%(体积分数)的接种物被转移到一个3升的有效容积为2 L的发酵罐,在35C 每分钟50转的搅拌的条

6、件下培养24小时。2.3. 分析方法用标准(biozhn)程序(Phisit, 2012)测量(cling)EPS和生物量的浓度(nngd)。所有样品一式三份进行评价。2.4. 实验设计在目前的研究中,RSM和(BBD)被用来研究过程变量如椰子水(A),NaCl剂量(B),孵育时间(C)和温度(D)对深层发酵等过程除个人和互动的影响(表1),而EPS产量(Y1)和生物量(Y2)为响应。结果适用于一个二阶多项式模型,如下面的公式所示其中Y是响应变量;xi和xj(i和j的范围从1 到K);0是模型的截距系数;J,JJ和IJ分别是相互作用的线性,二阶线性,二次系数;K是独立的参数的数量(在这项研究中

7、K = 4);EI是误差((Prakash Maran, Sivakumar, Thirugnanasambandham, & Sridhar, 2014)。然后,充足的模型进行方差分析和实际与预测图检查。最后,优化的过程变量进行数值优化方法结合。所有的统计分析采用的统计运用了设计专家统计统计软件包的帮助,表1过程变量及其参数表2 BBD实验设计及结果表3 SMF过程(guchng)连续模型的统计表表4 SMF过程(guchng)模型简要总结表5 SMF过程(guchng)单因素(yn s)方差分析的结果3 结果(ji gu)和讨论31 数学模型的开发(kif)和讨论BBD实验(shyn)数据

8、(表2)采用多回归分析,即连续平方模型和(表3)和模型统计总结(表4)。从结果来看,由于较高的F值,较高的相关系数(R2)和较低的p值,二阶多项式方程被选来代表SMF过程。得到的方程与编码的因素因素如下Y1 = 10.40 + 0.43A + 0.71C + 0.26D + 0.040AB + 0.46AC + 0.63BD+0.14CD 0.85A2 1.39B2 1.19C 2 0.61D2Y 2 = 3.72 + 0.46A + 0.48C + 0.27D + 0.235AB + 0.16AC + 0.60BD+0.18CD 0.76A2 1.95B2 2.15C 2 0.74D2然后,

9、建立的数学模型的合适性是运用方差分析(ANOVA)检测的,结果如表5所示。在表5中可以看出, EPS和生物质的高产量意味着开发二次模型是非常重呀的。二者建立的模型的p值小于0.05显示建立相应的模型的重要性。本研究得到的相对误差(CV%)和平均精度(AP)值,展示了观察和预测值之间重要且强烈的相关性的问题。同时,实际和预测的EPS和生物质产量绘制在图1。数据点接近直线,表明实时数据和从模型获得的数据之间的相应协调性。(Thirugnanasambandham et al., 2014c).3.2 SMF过程(guchng)中过程条件的影响从建立的数学模型来看,三元构建(u jin)是用来研究S

10、MF过程(guchng)变量的相互影响,如图.2和图3(Prakash Maran, Sivakumar, Thirugnanasambandham, & Sridhar,2013b)。为了研究椰子水的加入对SMF的影响,实验是在不同的椰子水中进行,结果示于图2(1B)。从结果来看,可以观察到,EPS和生物产量随椰子水加至45%的过程线性增加。然而,椰子水加超出45%显示出对SMF过程的负面影响。也研究了NaCl对SMF过程的影响。从结果来看,可以观察到,EPS和生物量随NaCl在5到20%范围内的增加呈线性(图2B)。然而,NaCl剂量超过20%,导致EPS和生物质产量的降低。检查培养时间对

11、SMF过程的影响,实验在不同培养时间进行,结果示于图3(1B)。从结果中,发现,该EPS和生物产量随培养时间达25小时迅速增加。超过25小时,结果显示可以忽略EPS和生物质产量。为了研究温度的影响,实验是在不同的温度下进行,结果如图3所示(1B),这表明,EPS和生物量随温度升高而增加(Looijesteijn & Hugenholtz, 1999)。之后EPS和生物质产量有显降低。SMF的过程扰动图如图4所示。它也证明了SMF过程变量影响的重要性。图一ssf过程的预测值和对应实际值图二RSM法表示(biosh)的SSF过程(guchng)变量(A和B)的影响(yngxing)图三 RSM法表

12、示的SSF过程变量(C和D)的影响图四 SSF过程(guchng)的扰动图3.3 多响应(xingyng)优化目前(mqin)SMF的最佳(zu ji)条件是40%的椰子水,15%氯化钠的剂量,在24 h和35C.的培养时间和温度条件下,产生了10.57 g / L的EPS和3.9 g / L的生物质。4. 结论在目前的研究中,检测了用L.菌株液体深层发酵技术生产EPS浓度和生物质。用含BBD的RSM法在三因素四水平建立二阶多项式模型。方差分析用来分析系统建立的数学模型是否合适。40%的椰子水,15%氯化钠的剂量,24小时的培养时间和 35C的温度被认为是最佳的条件。在这些条件下,产生了10.

13、57 g / L的EPS和3.9 g / L生物质。结果表明,SMF是利用L. confusus产生最多EPS合适的技术。参考文献De Vuyst, L., De Vin, F., Vaningelgem, F., & Degeest, B. (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal, 11, 687707.Duenas, M., Munduate,

14、 A., Perea, A., & Irastorza, A. (2003). Exopolysaccharide pro- duction by Pediococcus damnosus 2.6 in a semidened medium under different growth conditions. International Journal of Food Microbiology, 87, 113120.Looijesteijn, P. J., & Hugenholtz, J. (1999). Uncoupling of growth and exopolysaccha- rid

15、e production by Lactococcus lactis subsp. Cremoris NIZO B40 and optimization of its synthesis. Journal of Bioscience and Bioengineering, 88, 178182.Phisit, S. (2012). Statistical modeling and optimization for exopolysaccharide pro- duction by Lactobacillus confusus in submerged fermentation under hi

16、gh salinity stress. Food Science and Biotechnology, 21, 16471654.Prakash Maran, J., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2013a).Optimization of microwave assisted extraction of pectin from orange peel. Car- bohydrate Polymers, 97, 703709.Prakash Maran, J., Sivakumar, V., Thirugnan

17、asambandham, K., & Sridhar, R. (2013b).Response surface modeling and analysis of barrier and optical properties of maize starch edible lms. International Journal of Biological Macromolecules, 60,412421.Prakash Maran, J., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2014).Degradation behav

18、ior of biocomposites based on cassava starch buried under indoor soil conditions. Carbohydrate Polymers, 101, 2028.Svensson, M., Waak, E., Svensson, U., & Radstrom, P. (2005). Metabolically improved exopolysaccharide production by Streptococcus thermophilus and its inuence on the rheological propert

19、ies of fermented milk. Applied and Environmental Microbiology, 71, 63986400.Thirugnanasambandham, K., Sivakumar, V., & Prakash Maran, J. (2014). Optimiza- tion of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology. Journal of Environmental Health Science and Engi- neering, 12 /10.1186/2052-336X-12-29Thirugnanasambandham, K., Sivakumar, V., Prakash Maran, J., & Kandasmay, S. (2014). Chitosan based grey wastewater tr

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论