运城市重点2021-2022学年高三第一次调研测试数学试卷含解析_第1页
运城市重点2021-2022学年高三第一次调研测试数学试卷含解析_第2页
运城市重点2021-2022学年高三第一次调研测试数学试卷含解析_第3页
运城市重点2021-2022学年高三第一次调研测试数学试卷含解析_第4页
运城市重点2021-2022学年高三第一次调研测试数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为( )ABCD2若实数满足不等式组,则的最大值为( )ABC3D23如图,在中, ,是上的一点,若,则实数的值为(

2、 )ABCD4已知函数的值域为,函数,则的图象的对称中心为( )ABCD5已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为( )ABCD26圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是( )ABCD7 若x,y满足约束条件的取值范围是A0,6B0,4C6, D4, 8已知函数,其中为自然对数的底数,若存在实数,使成立,则实数的值为( )ABCD9某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )ABCD10已知椭圆:的左、右焦点分别为,过的直线与轴交于点,线段与交于点.若,

3、则的方程为( )ABCD11已知正方体的棱长为,分别是棱,的中点,给出下列四个命题: ; 直线与直线所成角为; 过,三点的平面截该正方体所得的截面为六边形; 三棱锥的体积为.其中,正确命题的个数为( )ABCD12某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13有以下四个命题:在中,的充要条件是;函数在区间上存在零点的充要条件是;对于函数,若,则必不是奇函数;函数与的图象关于直线对称.其中正确命题的序号为_.14设随机变量服从正态分布,若,则的值是_15设等差数列的前项和为,若,则_,的最大值

4、是_.16如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为_百米.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)是数列的前项和,且.(1)求数列的通项公式;(2)若,求数列中最小的项.18(12分)如图,在矩形中,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.()求证:平面平面;()求直线与平面所成角的正弦值.19(12分)在如图所示的几何体中,四边形ABCD为矩形,平面ABEF平面ABCD,EFAB,BAF90,AD2,A

5、BAF2EF2,点P在棱DF上(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;(2)若二面角DAPC的正弦值为,求PF的长度20(12分)在四棱锥的底面是菱形, 底面, 分别是的中点, .()求证: ;()求直线与平面所成角的正弦值;(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点的位置;若不存在,说明理由.21(12分)已知.()当时,解不等式;()若的最小值为1,求的最小值.22(10分)如图,矩形和梯形所在的平面互相垂直,.(1)若为的中点,求证:平面;(2)若,求四棱锥的体积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中

6、,只有一项是符合题目要求的。1B【解析】根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数 则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即 故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.2C【解析】作出可行域,直线目标函数对应的直线,平移该直线可得最优解【详解】作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取得最大值1故选:C【点睛】本题考查简单的线性规划问题,

7、解题关键是作出可行域,本题要注意可行域不是一个封闭图形3B【解析】变形为,由得,转化在中,利用三点共线可得.【详解】解:依题: ,又三点共线,解得故选:【点睛】本题考查平面向量基本定理及用向量共线定理求参数. 思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值. (2)直线的向量式参数方程: 三点共线 (为平面内任一点,)4B【解析】由值域为确定的值,得,利用对称中心列方程求解即可【详解】因为,又依题意知的值域为,所以 得,所以,令,得,则的图象的对称中心为.故选:B【点睛】本题考查三角函数 的图

8、像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为05B【解析】求出圆心,代入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B【点睛】利用的关系求双曲线的离心率,是基础题.6C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题7D【解析】解:x、y满

9、足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是4,+)故选D8A【解析】令f(x)g(x)=x+exa1n(x+1)+4eax,令y=xln(x+1),y=1=,故y=xln(x+1)在(1,1)上是减函数,(1,+)上是增函数,故当x=1时,y有最小值10=1,而exa+4eax4,(当且仅当exa=4eax,即x=a+ln1时,等号成立);故f(x)g(x)3(当且仅当等号同时成立时,等号成立);故x=a+ln1=1,即a=1ln1故选:A9A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为

10、底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为 故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.10D【解析】由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所

11、以,得,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.11C【解析】画出几何体的图形,然后转化判断四个命题的真假即可【详解】如图;连接相关点的线段,为的中点,连接,因为是中点,可知,可知平面,即可证明,所以正确;直线与直线所成角就是直线与直线所成角为;正确;过,三点的平面截该正方体所得的截面为五边形;如图:是五边形所以不正确;如图:三棱锥的体积为:由条件易知F是GM中点,所以,而,所以三棱锥的体积为,正确;故选:【点睛】本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题12C【解析】几何体是由一个圆锥和半

12、球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案.【详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由三角形的正弦定理和边角关系可判断;由零点存在定理和二次函数的图象可判断;由,结合奇函数的定义,可判断;由函数图象对称的特点可判断【详解】解:在中,故正确;函数在区间上存在零点,比如在存在零点,但是,故错误;对于函数,若,满足,但可能为奇函数,故错误; 函数与的图象,可令

13、,即,即有和的图象关于直线对称,即对称,故错误故答案为:【点睛】本题主要考查函数的零点存在定理和对称性、奇偶性的判断,考查判断能力和推理能力,属于中档题141【解析】由题得,解不等式得解.【详解】因为,所以,所以c=1.故答案为1【点睛】本题主要考查正态分布的图像和性质,意在考查学生对该知识的理解掌握水平和分析推理能力.15 【解析】利用等差数列前项和公式,列出方程组,求出首项和公差的值,利用等差数列的通项公式可求出数列的通项公式,可求出的表达式,然后利用双勾函数的单调性可求出的最大值.【详解】(1)设等差数列的公差为,则,解得,所以,数列的通项公式为;(2),令,则且,由双勾函数的单调性可知

14、,函数在时单调递减,在时单调递增,当或时,取得最大值为.故答案为:;.【点睛】本题考查等差数列的通项公式、前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题16【解析】建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.【详解】以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,所以,所以,则,则,当时,则单调递减,当时,则单调递增,所以当时,最短,此时.故答案为:【点睛】本题考查导数的实际应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)由可得出,两式作差可求得

15、数列的通项公式;(2)求得,利用数列的单调性的定义判断数列的单调性,由此可求得数列的最小项的值.【详解】(1)对任意的,由得,两式相减得,因此,数列的通项公式为;(2)由(1)得,则.当时,即,;当时,即,.所以,数列的最小项为.【点睛】本题考查利用与的关系求通项,同时也考查了利用数列的单调性求数列中的最小项,考查推理能力与计算能力,属于中等题.18()详见解析;().【解析】()根据,可得平面,故而平面平面()过作于,则可证平面,故为所求角,在中利用余弦定理计算,再计算【详解】解:()因为,平面,平面所以平面,又平面,所以平面平面;()过作于,则由平面,且平面知,所以平面,从而是直线与平面所

16、成角.因为, 所以,从而.【点睛】本题考查了面面垂直的判定,考查直线与平面所成角的计算,属于中档题19(1)(2)【解析】(1)以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,则(1,0,2),(2,1,1),计算夹角得到答案.(2)设,01,计算P(0,2,22),计算平面APC的法向量(1,1,),平面ADF的法向量(1,0,0),根据夹角公式计算得到答案.【详解】(1)BAF90,AFAB,又平面ABEF平面ABCD,且平面ABEF平面ABCDAB,AF平面ABCD,又四边形ABCD为矩形,以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,AD2,A

17、BAF2EF2,P是DF的中点,B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(1,0,2),(2,1,1),设异面直线BE与CP所成角的平面角为,则cos,异面直线BE与CP所成角的余弦值为(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),设P(a,b,c),01,即(a,b,c2)(0,2,2),解得a0,b2,c22,P(0,2,22),(0,2,22),(2,2,0),设平面APC的法向量(x,y,z),则,取x1,得(1,1,),平面ADP的法向量(1,0,0),二面角DAPC的正弦值为,|cos|,解得,P(0,),PF的长度|

18、PF|【点睛】本题考查了异面直线夹角,根据二面角求长度,意在考查学生的空间想象能力和计算能力.20()见解析; (); ()见解析.【解析】()由题意结合几何关系可证得平面,据此证明题中的结论即可;()建立空间直角坐标系,求得直线的方向向量与平面的一个法向量,然后求解线面角的正弦值即可;()假设满足题意的点存在,设,由直线与的方向向量得到关于的方程,解方程即可确定点F的位置.【详解】()由菱形的性质可得:,结合三角形中位线的性质可知:,故,底面,底面,故,且,故平面,平面,()由题意结合菱形的性质易知,以点O为坐标原点,建立如图所示的空间直角坐标系,则:,设平面的一个法向量为,则:,据此可得平面的一个法向量为,而,设直线与平面所成角为,则.()由题意可得:,假设满足题意的点存在,设,据此可得:,即:,从而点F的坐标为,据此可得:,,结合题意有:,解得:.故点F为中点时满足题意.【点睛】本题主要考查线面垂直的判定定理与性质定理,线面角的向量求法,立体几何中的探索性问题等知识,意在考查学生的转化能力和计算求解能力.21();().【解析】()当时,令,作出的图像,结合图像即可求解;()结合绝对值三角不等式可得,再由“1”的妙用可拼凑为,结合基本不等式即可求解;【详解】()令,作出它们的大致图像如下:由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论