云南省陆良县2021-2022学年高三下学期第一次联考数学试卷含解析_第1页
云南省陆良县2021-2022学年高三下学期第一次联考数学试卷含解析_第2页
云南省陆良县2021-2022学年高三下学期第一次联考数学试卷含解析_第3页
云南省陆良县2021-2022学年高三下学期第一次联考数学试卷含解析_第4页
云南省陆良县2021-2022学年高三下学期第一次联考数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1是的( )条件A充分不必要B必要不充分C充要D既不充分也不必要2已知双曲线:,为其左、右焦点,

2、直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为( )ABCD3已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于()ABC-D-4抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( )ABCD5已知椭圆内有一条以点为中点的弦,则直线的方程为( )ABCD6已知双曲线C:=1(a0,b0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为( )ABC2D+17已知为定义在上的偶函数,当时,则( )ABCD8已知集合,则集合真子集的个数为( )A3B4C7D89已知实

3、数满足不等式组,则的最小值为( )ABCD10下列命题中,真命题的个数为( )命题“若,则”的否命题;命题“若,则或”;命题“若,则直线与直线平行”的逆命题.A0B1C2D311已知直线是曲线的切线,则( )A或1B或2C或D或112在直角中,若,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知集合,.若,则实数a的值是_.14已知,记,则的展开式中各项系数和为_15记为数列的前项和,若,则_.16设实数x,y满足,则点表示的区域面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建

4、立极坐标系已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,点,求的值18(12分)如图,在四棱锥PABCD中,底面ABCD为菱形,PA底面ABCD,BAD60,AB=PA4,E是PA的中点,AC,BD交于点O.(1)求证:OE平面PBC;(2)求三棱锥EPBD的体积.19(12分)椭圆的左、右焦点分别为,椭圆上两动点使得四边形为平行四边形,且平行四边形的周长和最大面积分别为8和.(1)求椭圆的标准方程;(2)设直线与椭圆的另一交点为,当点在以线段为直径的圆上时,求直线的方程.20(12分)已知函数.(1)解不等式

5、;(2)记函数的最大值为,若,证明:.21(12分)如图,D是在ABC边AC上的一点,BCD面积是ABD面积的2倍,CBD=2ABD=2()若=,求的值;()若BC=4,AB=2,求边AC的长22(10分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且 对应的集合是 ,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条

6、件、必要条件的判断方法集合关系法。设 ,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。2D【解析】由|AF2|3|BF2|,可得.设直线l的方程xmy+,m0,设,即y13y2,联立直线l与曲线C,得y1+y2-,y1y2,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程xmy+,m0,双曲线的渐近线方程为x2y,m2,设A(x1,y1),B(x2,y2),且y10,由|AF2|3|BF2|,y13y2由,得(2m)24(m24)0,即m2+40恒成立,y1+y2,y1y2,联立得,联

7、立得,即:,解得:,直线的斜率为,故选D【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题3A【解析】分析:计算,由z1,是实数得,从而得解.详解:复数z1=3+4i,z2=a+i,.所以z1,是实数,所以,即.故选A.点睛:本题主要考查了复数共轭的概念,属于基础题.4A【解析】首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【详解】样本空间样本点为个, 具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置

8、1_ _,_1_,_ _1剩下2个空位可是0或1,这三种排列的所有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个故不同的样本点数为8个,.故选:A【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题5C【解析】设,则,相减得到,解得答案.【详解】设,设直线斜率为,则,相减得到:,的中点为,即,故,直线的方程为:.故选:.【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.6B【解析】以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,

9、即,则,整理得,则(舍去),.故选:B.【点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.7D【解析】判断,利用函数的奇偶性代入计算得到答案.【详解】,故选:【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.8C【解析】解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【详解】解:由,得所以集合的真子集个数为个.故选:C【点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.9B【解析】作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的

10、可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.10C【解析】否命题与逆命题是等价命题,写出的逆命题,举反例排除;原命题与逆否命题是等价命题,写出的逆否命题后,利用指数函数单调性验证正确;写出的逆命题判,利用两直线平行的条件容易判断正确.【详解】的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;的逆否命题为“若且,则”,该命题为真命题,故为真命题;的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【点睛】本题考查判断命题真

11、假. 判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;判定“若,则”是假命题,只需举一反例即可11D【解析】求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.【详解】直线的斜率为,对于,令,解得,故切点为,代入直线方程得,解得或1.故选:D【点睛】本小题主要考查根据切线方程求参数,属于基础题.12C【解析】在直角三角形ABC中,求得 ,再由向量的加减运算,运用平面向量基

12、本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值【详解】在直角中,若,则 故选C.【点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。139【解析】根据集合交集的定义即得.【详解】集合,则a的值是9.故答案为:9【点睛】本题考查集合的交集,是基础题.14【解析】根据定积分的计算,得到,令,求得,即可得到答案【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项

13、式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题15-254【解析】利用代入即可得到,即是等比数列,再利用等比数列的通项公式计算即可.【详解】由已知,得,即,所以又,即,所以是以-4为首项,2为公比的等比数列,所以,即,所以。故答案为:【点睛】本题考查已知与的关系求,考查学生的数学运算求解能力,是一道中档题.16【解析】先画出满足条件的平面区域,求出交点坐标,利用定积分即可求解.【详解】画出实数x,y满足表示的平面区域,如图(阴影部分):则阴影部分的面积,故答案为:【点睛】本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.三、解答题:共70分。解答应写出

14、文字说明、证明过程或演算步骤。17(),曲线 ()【解析】试题分析:(1)消去参数可得直线的直角坐标系方程,由可得曲线的直角坐标方程;(2)将(为参数)代入曲线的方程得:,利用韦达定理求解即可.试题解析:(1),曲线,(2)将(为参数)代入曲线的方程得:.所以.所以.18(1)证明见解析(2)【解析】(1)连接OE,利用三角形中位线定理得到OEPC,即可证出OE平面PBC;(2)由E是PA的中点,求出SABD,即可求解.【详解】(1)证明:如图所示:点O,E分别是AC,PA的中点,OE是PAC的中位线,OEPC,又OE平面PBC,PC平面PBC,OE平面PBC;(2)解:PAAB4,AE2,底

15、面ABCD为菱形,BAD60,SABD,三棱锥EPBD的体积.【点睛】本题考查空间线、面位置关系,证明直线与平面平行以及求三棱锥的体积,注意等体积法的应用,考查逻辑推理、数学计算能力,属于基础题.19(1)(2)或【解析】(1)根据题意计算得到,得到椭圆方程.(2)设,联立方程得到,根据,计算得到答案.【详解】(1)由平行四边形的周长为8,可知,即.由平行四边形的最大面积为,可知,又,解得.所以椭圆方程为.(2)注意到直线的斜率不为0,且过定点.设,由消得,所以,因为,所以.因为点在以线段为直径的圆上,所以,即,所以直线的方程或.【点睛】本题考查了椭圆方程,根据直线和椭圆的位置关系求直线,将题

16、目转化为是解题的关键.20(1);(2)证明见解析【解析】(1)将函数整理为分段函数形式可得,进而分类讨论求解不等式即可;(2)先利用绝对值不等式的性质得到的最大值为3,再利用均值定理证明即可.【详解】(1)当时,恒成立,;当时,即,;当时,显然不成立,不合题意;综上所述,不等式的解集为.(2)由(1)知,于是由基本不等式可得 (当且仅当时取等号) (当且仅当时取等号)(当且仅当时取等号)上述三式相加可得(当且仅当时取等号),故得证.【点睛】本题考查解绝对值不等式和利用均值定理证明不等式,考查绝对值不等式的最值的应用,解题关键是掌握分类讨论解决带绝对值不等式的方法,考查了分析能力和计算能力,属于中档题.21();()【解析】()利用三角形面积公式以及并结合正弦定理,可得结果.()根据,可得,然后使用余弦定理,可得结果.【详解】(),所以所以;(),所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论