版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知为非零向量,“”为“”的( )A充分不必要条件B充分必要条件C必要不充分条件D既不充分也不必要条件2已知复数,则( )ABCD3已知抛物线:,直线与分别相交于点,与的准线相交于点
2、,若,则( )A3BCD4如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A在内总存在与平面平行的线段B平面平面C三棱锥的体积为定值D可能为直角三角形5若,则的值为( )ABCD6下图所示函数图象经过何种变换可以得到的图象( )A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位7已知为圆:上任意一点,若线段的垂直平分线交直线于点,则点的轨迹方程为( )ABC()D()8已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为( )ABCD9执行如图所示
3、的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD10已知集合,则的真子集个数为( )A1个B2个C3个D4个11已知函数f(x)sin2x+sin2(x),则f(x)的最小值为( )ABCD12已知函数(,且)在区间上的值域为,则( )ABC或D或4二、填空题:本题共4小题,每小题5分,共20分。13已知i为虚数单位,复数,则_14设为椭圆在第一象限上的点,则的最小值为_.15电影厉害了,我的国于2018年3月正式登陆全国院线,网友纷纷表示,看完电影热血沸腾“我为我的国家骄傲,我为我是中国人骄傲!”厉害了,我的国正在召唤我们每一个人,不忘初心,用奋斗书写无悔人生,小明想约甲
4、、乙、丙、丁四位好朋友一同去看厉害了,我的国,并把标识为的四张电影票放在编号分别为1,2,3,4的四个不同的盒子里,让四位好朋友进行猜测:甲说:第1个盒子里放的是,第3个盒子里放的是乙说:第2个盒子里放的是,第3个盒子里放的是丙说:第4个盒子里放的是,第2个盒子里放的是丁说:第4个盒子里放的是,第3个盒子里放的是小明说:“四位朋友你们都只说对了一半”可以预测,第4个盒子里放的电影票为_16内角,的对边分别为,若,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.(1)求证:平面;(2)求二面角的正弦值.18
5、(12分)()证明: ;()证明:();()证明:.19(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,二面角为,求异面直线与所成角的余弦值.20(12分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.21(12分)如图所示,在四棱锥中,平面,底面ABCD满足ADBC,E为AD的中点,AC与BE的交点为O.(1)设H是线段BE上的动点,证明:三棱锥的体积是定值;(2)求四棱锥的体积;(3)求直线BC与平面PBD所成角的余弦值22(10分)已知函数.(1)讨论的单调性;(2
6、)若函数在上存在两个极值点,且,证明.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即可判断两命题的关系.【详解】若成立,则,则向量与的方向相同,且,从而,所以;若,则向量与的方向相同,且,从而,所以.所以“”为“”的充分必要条件.故选:B【点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.2B【解析】利用复数除法、加法运算,化简求得,再求得【详解】,故.故选:B【点睛】本小题主要考查复数的除法运算、
7、加法运算,考查复数的模,属于基础题.3C【解析】根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.【详解】显然直线过抛物线的焦点如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故选:C【点睛】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.4D【解析】A项用平行于平面ABC的平面与平面MDN相交,则交线与平面
8、ABC平行;B项利用线面垂直的判定定理;C项三棱锥与三棱锥体积相等,三棱锥的底面积是定值,高也是定值,则体积是定值;D项用反证法说明三角形DMN不可能是直角三角形.【详解】A项,用平行于平面ABC的平面截平面MND,则交线平行于平面ABC,故正确; B项,如图:当M、N分别在BB1、CC1上运动时,若满足BM=CN,则线段MN必过正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正确;C项,当M、N分别在BB1、CC1上运动时,A1DM的面积不变,N到平面A1DM的距离不变,所以棱锥N-A1DM的体积不变,即三棱锥A1-DMN的体积为定值,故正确;D项,若DMN为直角三角
9、形,则必是以MDN为直角的直角三角形,但MN的最大值为BC1,而此时DM,DN的长大于BB1,所以DMN不可能为直角三角形,故错误.故选D【点睛】本题考查了命题真假判断、棱柱的结构特征、空间想象力和思维能力,意在考查对线面、面面平行、垂直的判定和性质的应用,是中档题.5A【解析】取,得到,取,则,计算得到答案.【详解】取,得到;取,则.故.故选:.【点睛】本题考查了二项式定理的应用,取和是解题的关键.6D【解析】根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.【详解】设函数解析式为,根据图像:,故,即,取,得到,函数向右平移个单位得到.故选:.【点睛】本题考查了根据函数图像求函数解
10、析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.7B【解析】如图所示:连接,根据垂直平分线知,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.8D【解析】可设的内切圆的圆心为,设,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值【详解】可设的内切圆的圆心为,为切点,且为中点,设,则,且有,解得,设,设圆切于点,则,由,解得,所以为等边三角形,所以,解得.因此,该椭圆的离心率为.故
11、选:D.【点睛】本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题9B【解析】根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,不成立,运行第二次,不成立,运行第三次,不成立,运行第四次,不成立,运行第五次,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.10C【解析】求出的元素,再确定其真子集个数【详解】由,解得或,中有两个元素,因此它的真子集有3个故选:C.【点睛】本
12、题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集11A【解析】先通过降幂公式和辅助角法将函数转化为,再求最值.【详解】已知函数f(x)sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.12C【解析】对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,所以,所以;当时,所以,所以.综上,或,故选C.【点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学
13、运算和数学抽象的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13【解析】先把复数进行化简,然后利用求模公式可得结果.【详解】故答案为:.【点睛】本题主要考查复数模的求解,利用复数的运算把复数化为的形式是求解的关键,侧重考查数学运算的核心素养.14【解析】利用椭圆的参数方程,将所求代数式的最值问题转化为求三角函数最值问题,利用两角和的正弦公式和三角函数的性质,以及求导数、单调性和极值,即可得到所求最小值【详解】解:设点,其中,由,可设,导数为,由,可得,可得或,由,可得,即,可得,由可得函数递减;由,可得函数递增,可得时,函数取得最小值,且为,则的最小值为1故答案为:1【点睛】本题
14、考查椭圆参数方程的应用,利用三角函数的恒等变换和导数法求函数最值的方法,考查化简变形能力和运算能力,属于难题15A或D【解析】分别假设每一个人一半是对的,然后分别进行验证即可【详解】解:假设甲说:第1个盒子里面放的是是对的,则乙说:第3个盒子里面放的是是对的,丙说:第2个盒子里面放的是是对的,丁说:第4个盒子里面放的是是对的,由此可知第4个盒子里面放的是;假设甲说:第3个盒子里面放的是是对的,则丙说:第4个盒子里面放的是是对的,乙说:第2个盒子里面放的是是对的,丁说:第3个盒子里面放的是是对的,由此可知第4个盒子里面放的是故第4个盒子里面放的电影票为或故答案为:或【点睛】本题考查简单的合情推理
15、,考查推理论证能力、分析判断能力、归纳总结能力,属于中档题16【解析】,即,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析;(2).【解析】(1)取的中点,连接、,连接,证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;(2)以点为坐标原点,、所在直线分别为、轴建立空间直角坐标系,利用空间向量法可求得二面角的余弦值,进而可求得其正弦值.【详解】(1)取中点,连接、,且,四边形为平行四边形,且,、分别为、中点,且,则四边形为平行四边形,且,且,且,所以,四边形为平行四边形,且,四边形为平行四边形,平面,平面,平面;(2)以点为坐标原点,、所在
16、直线分别为、轴建立如下图所示的空间直角坐标系,则、,设平面的法向量为,由,得,取,则,设平面的法向量为,由,得,取,则,因此,二面角的正弦值为.【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.18 ()见解析()见解析()见解析【解析】运用数学归纳法证明即可得到结果化简,运用累加法得出结果运用放缩法和累加法进行求证【详解】()数学归纳法证明时, 当时,成立; 当时,假设成立,则时所以时,成立综上可知,时, ()由得所以; ; 故,又所以 () 由累加法得: 所以故【点睛】本题考查了数列的综合,运用数学归纳法证明不等式的成立,结合已知条件
17、进行化简求出化简后的结果,利用放缩法求出不等式,然后两边同时取对数再进行证明,本题较为困难。19(1)证明见解析(2)【解析】(1)取中点连接,得,可得,可证,可得,进而平面,即可证明结论;(2)设分别为边的中点,连,可得,可得(或补角)是异面直线与所成的角,可得,为二面角的平面角,即,设,求解,即可得出结论.【详解】(1)证明:取中点连接,由则,则,故,平面,又平面,故平面平面(2)解法一:设分别为边的中点,则,(或补角)是异面直线与所成的角.设为边的中点,则,由知.又由(1)有平面,平面, 所以为二面角的平面角,设则在中,从而在中,又,从而在中,因,因此,异面直线与所成角的余弦值为.解法二
18、:过点作交于点由(1)易知两两垂直,以为原点,射线分别为轴,轴,轴的正半轴,建立空间直角坐标系.不妨设,由,易知点的坐标分别为则显然向量是平面的法向量已知二面角为,设,则设平面的法向量为,则令,则由由上式整理得,解之得(舍)或,因此,异面直线与所成角的余弦值为.【点睛】本题考查空间点、线、面位置关系,证明平面与平面垂直,考查空间角,涉及到二面角、异面直线所成的角,做出空间角对应的平面角是解题的关键,或用空间向量法求角,意在考查直观想象、逻辑推理、数学计算能力,属于中档题.20(1)见解析(2).【解析】(1)与平面垂直,过点作与平面平行的平面即可(2)建立空间直角坐标系求线面角正弦值【详解】解:(1)截面如下图所示:其中,分别为边,的中点,则垂直于平面.(2)建立如图所示的空间直角坐标系,则,所以,.设平面的一个法向量为,则.不妨取,则,所以与该平面所成角的正弦值为.(若将作为该平面法向量,需证明与该平面垂直)【点睛】考查确定平面的方法以及线面角的求法,中档题.21(1)证明见解析 (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省龙东地区2024-2025学年高一上学期阶段测试(二)(期中) 语文 含解析
- 2024室内智能物流机器人
- 常德2024年05版小学六年级下册英语第五单元综合卷
- 郑州-PEP-2024年小学六年级上册英语第二单元寒假试卷
- 珠宝生产企业的账务处理分录-记账实操
- 强化企业安全生产-责任落实十项
- 概括内容要点理解词句含义-2025年高考语文一轮复习知识清单(解析版)
- 1.1 反比例函数 同步练习
- 2024年初级经济师之初级金融专业模拟考试试卷B卷(含答案)
- 平面图形的镶嵌评课稿(10篇)
- 同底数幂的乘法练习
- 医院检验科实验室生物安全程序文件SOP
- 岗位竞聘课件(完美版)
- 中国新闻事业发展史 第十四讲 新闻事业的曲折发展
- JJG 270-2008血压计和血压表
- 中职数学《平面的基本性质》课件
- 尘肺病的知识讲座
- 大学生生涯规划与职业发展智慧树知到期末考试答案2024年
- 消毒供应室护理查房
- 年产十二万吨天然橙汁食品工厂设计样本
- 消防安全与建筑设计的结合
评论
0/150
提交评论