版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知向量,设函数,则下列关于函数的性质的描述正确的是A关于直线对称B关于点对称C周期为D在上是增函数2如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与
2、直线相交的平面个数分别记为,则下列结论正确的是()ABCD3下列说法正确的是( )A“若,则”的否命题是“若,则”B在中,“”是“”成立的必要不充分条件C“若,则”是真命题D存在,使得成立4已知曲线且过定点,若且,则的最小值为( ).AB9C5D5甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( )A甲B乙C丙D丁6过双曲线 的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为( )ABCD7已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱
3、的体积的比为( )ABCD8已知向量,=(1,),且在方向上的投影为,则等于( )A2B1CD09已知复数z满足(i为虚数单位),则z的虚部为( )ABC1D10已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是( )A该超市2018年的12个月中的7月份的收益最高B该超市2018年的12个月中的4月份的收益最低C该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元11若双曲线:的一条渐近线方程为,则( )ABCD12已知盒中有3个红球,3个黄球,3个
4、白球,且每种颜色的三个球均按,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13九章算术卷5商功记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为_.14已知是第二象限角,且,则_.15的展开式中的系数为_.16已知实数x,y满足(2x-y)2+4y2=1,则2x+y的最大
5、值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望18(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.19(12分
6、)已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点.(1)求证:.(2)若点在轴的上方,当的面积最小时,求直线的斜率.附:多项式因式分解公式:20(12分)选修4-5:不等式选讲已知函数()解不等式;()对及,不等式恒成立,求实数的取值范围.21(12分)已知抛物线和圆,倾斜角为45的直线过抛物线的焦点,且与圆相切(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设求证点在定直线上,并求该定直线的方程22(10分)已知函数,其中,.(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理
7、由.(2)若在处取得极大值,求实数a的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】当时,f(x)不关于直线对称;当时, ,f(x)关于点对称;f(x)得周期,当时, ,f(x)在上是增函数本题选择D选项.2A【解析】根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.【详解】如下图所示,平面,从而平面,易知与正方体的其余四个面所在平面均相交,平面,平面,且与正方体的其余四个面所在平面均相交,结合四个选项可知,只有正确.故选:A.【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综
8、合应用,对空间想象能力要求较高,属于中档题.3C【解析】A:否命题既否条件又否结论,故A错.B:由正弦定理和边角关系可判断B错.C:可判断其逆否命题的真假,C正确.D:根据幂函数的性质判断D错.【详解】解:A:“若,则”的否命题是“若,则”,故 A错.B:在中,故“”是“”成立的必要充分条件,故B错.C:“若,则”“若,则”,故C正确.D:由幂函数在递减,故D错.故选:C【点睛】考查判断命题的真假,是基础题.4A【解析】根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【点睛】本题考查指数型函数的性质,以及基本不
9、等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.5C【解析】分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;假设丁说的是真话
10、,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.6C【解析】由题意可得双曲线的渐近线的方程为.为线段的中点,则为等腰三角形.由双曲线的的渐近线的性质可得,即.双曲线的离心率为故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形
11、的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:求出 ,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围)7D【解析】分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.8B【解析】先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【点睛】本题考查向量的几何意义,考查投影公式的应用,是基础
12、题.9D【解析】根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.10D【解析】用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长
13、万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.11A【解析】根据双曲线的渐近线列方程,解方程求得的值.【详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A【点睛】本小题主要考查双曲线的渐近线,属于基础题.12B【解析】首先求出基本事件总数,则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母,”, 记事件“恰好不同时包含字母,”为,利用对立事件的概率公式计算可得;【详解】解:从9个球中摸出3个球,则基本事件总数为(个),则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母,”记事件“恰好不同
14、时包含字母,”为,则.故选:B【点睛】本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题二、填空题:本题共4小题,每小题5分,共20分。133【解析】根据圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),可得,进而可求出的值【详解】解:设圆柱底面圆的半径为,圆柱的高为,由题意知,解得.故答案为:3.【点睛】本题主要考查了圆柱的体积公式.只要能看懂题目意思,结合方程的思想即可求出结果.14【解析】由是第二象限角,且,可得,由及两角和的正切公式可得的值.【详解】解:由是第二象限角,且,可得,由,可得,代入,可得,故答案为:.【点睛】本题主要考查同角三角
15、函数的基本关系及两角和的正切公式,相对不难,注意运算的准确性.1580.【解析】只需找到展开式中的项的系数即可.【详解】展开式的通项为,令,则,故的展开式中的系数为80.故答案为:80.【点睛】本题考查二项式定理的应用,涉及到展开式中的特殊项系数,考查学生的计算能力,是一道容易题.162【解析】直接利用柯西不等式得到答案.【详解】根据柯西不等式:2x-y2+4y2=12x-y+2y22,故2x+y2,当2x-y=2y,即x=328,y=24时等号成立.故答案为:2.【点睛】本题考查了柯西不等式求最值,也可以利用均值不等式,三角换元求得答案.三、解答题:共70分。解答应写出文字说明、证明过程或演
16、算步骤。17(1)当或时,有3个坑要补播种的概率最大,最大概率为; (2)见解析.【解析】(1)将有3个坑需要补种表示成n的函数,考查函数随n的变化情况,即可得到n为何值时有3个坑要补播种的概率最大(2)n1时,X的所有可能的取值为0,1,2,3,1分别计算出每个变量对应的概率,列出分布列,求期望即可【详解】(1)对一个坑而言,要补播种的概率,有3个坑要补播种的概率为.欲使最大,只需,解得,因为,所以当时,;当时,;所以当或时,有3个坑要补播种的概率最大,最大概率为.(2)由已知,的可能取值为0,1,2,3,1.,所以的分布列为01231的数学期望.【点睛】本题考查了古典概型的概率求法,离散型
17、随机变量的概率分布,二项分布,主要考查简单的计算,属于中档题18(1),(2)证明见解析【解析】(1)利用首项和公差构成方程组,从而求解出的通项公式;由的通项公式求解出的表达式,根据以及,求解出的通项公式;(2)利用错位相减法求解出的前项和,根据不等关系证明即可.【详解】(1)设首项为,公差为.由题意,得,解得,当时,.当时,满足上式.(2),令数列的前项和为.两式相减得恒成立,得证.【点睛】本题考查等差数列、等比数列的综合应用,难度一般.(1)当用求解的通项公式时,一定要注意验证是否成立;(2)当一个数列符合等差乘以等比的形式,优先考虑采用错位相减法进行求和,同时注意对于错位的理解.19(1
18、)证明见解析(2)【解析】(1)由得令可得,进而得到,同理,利用数量积坐标计算即可;(2),分,两种情况讨论即可.【详解】(1)证明:点的坐标为.联立方程,消去后整理为有,可得,.可得点的坐标为.当时,可求得点的坐标为,.有,故有.(2)若点在轴上方,因为,所以有,由(1)知因为时.由(1)知,由函数单调递增,可得此时.当时,由(1)知令由,故当时,此时函数单调递增:当时,此时函数单调递减,又由,故函数的最小值,函数取最小值时,可求得.由知,若点在轴上方,当的面积最小时,直线的斜率为.【点睛】本题考查直线与椭圆的位置关系,涉及到分类讨论求函数的最值,考查学生的运算求解能力,是一道难题.20().().【解析】详解:()当时,由,解得;当时,不成立;当时,由,解得.所以不等式的解集为.()因为,所以.由题意知对,即,因为,所以,解得.【点睛】 绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:绝对值定义法;平方法;零点区域法 不等式的恒成立可用分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围这种方法本质也是求最值一般有: 为参数)恒成立 为参数)恒成立 21(1);(2)点在定直线上【解析】(1)设出直线的方程为,由直线和圆相切的条件:,解得;(2)设出,运用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度抵押贷款合同范本:抵押物借条(2024版)
- 二零二四年旅游服务业应收账款质押租赁合同3篇
- 2025年度商业大厦物业管理与客户关系管理合同
- 二零二五年度场监管委天津安全生产事故应急预案编制合同4篇
- 2025年度国际贸易实务第二章国际货物买卖合同
- 2025年环卫车辆租赁及配套设施租赁合同范本
- 2025年度酒店餐饮设备固定资产交易合同模板
- 2025年度过桥贷款金融科技创新合同
- 2025年海上货物运输保险附加责任险种扩展合同
- 二零二四年企业风险管理常年法律顾问合同3篇
- 励志课件-如何做好本职工作
- 2024年山东省济南市中考英语试题卷(含答案解析)
- 2025中考英语作文预测:19个热点话题及范文
- 静脉治疗护理技术操作标准(2023版)解读 2
- 2024年全国各地中考试题分类汇编(一):现代文阅读含答案
- GB/T 30306-2024家用和类似用途饮用水处理滤芯
- 武强县华浩数控设备科技有限公司年产9000把(只)提琴、吉他、萨克斯等乐器及80台(套)数控雕刻设备项目环评报告
- 安全生产法律法规汇编(2024年4月)
- DB11∕T 882-2023 房屋建筑安全评估技术规程
- 华为员工股权激励方案
- 卫生院安全生产知识培训课件
评论
0/150
提交评论