下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.*;高考数学知识点:指数函数、函数奇偶性指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x可以取整个实数集合为定义域,那么只有使得如下图为a的不同大小影响函数图形的情况。可以看到:1指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,那么必然使得函数的定义域不存在连续的区间,因此我们不予考虑。2指数函数的值域为大于0的实数集合。3函数图形都是下凹的。4a大于1,那么指数函数单调递增;a小于1大于0,那么为单调递减的。5可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中当然不能等于0,函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位
2、置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中程度直线y=1是从递减到递增的一个过渡位置。6函数总是在某一个方向上无限趋向于X轴,永不相交。7函数总是通过0,1这点。8显然指数函数无界。奇偶性注图:1为奇函数2为偶函数1定义一般地,对于函数fx1假如对于函数定义域内的任意一个x,都有f-x=fx,那么函数fx就叫做奇函数。2假如对于函数定义域内的任意一个x,都有f-x=fx,那么函数fx就叫做偶函数。3假如对于函数定义域内的任意一个x,f-x=-fx与f-x=fx同时成立,那么函数fx既是奇函数又是偶函数,称为既奇又偶函数。4假如对于函数定义域内的任意一个x,f-x=-
3、fx与f-x=fx都不能成立,那么函数fx既不是奇函数又不是偶函数,称为非奇非偶函数。说明:奇、偶性是函数的整体性质,对整个定义域而言奇、偶函数的定义域一定关于原点对称,假如一个函数的定义域不关于原点对称,那么这个函数一定不是奇或偶函数。分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与fx比较得出结论判断或证明函数是否具有奇偶性的根据是定义2奇偶函数图像的特征:定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。fx为奇函数?fx的图像关于原点对称点x,y-x,-y奇函数在某一区间上单调递增,那么在它的对称区间上也是单调递增。偶函数在某一区间上单调递增,那么在它的对称区间上单调递减。3.奇偶函数运算1.两个偶函数相加所得的和为偶函数.2.两个奇函数相加所得的和为奇函数.3.一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.4.两个偶函数相乘所得的积为偶函数.5.两个奇函数相乘所得的积为偶函数.6.一个偶函数与一个奇函数相乘所得的积为奇函数.老师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模拟。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版个体户店铺租赁合同(标准版)3篇
- 大型公共建筑监理合同(2篇)
- 12 醉翁亭记2024-2025学年九年级语文上册同步说课稿(河北专版)
- 22 文言文二则 书戴嵩画牛(说课稿)-2024-2025学年统编版语文六年级上册
- 2024年汽轮机油技术升级与市场推广合作协议3篇
- 完整交通事故赔偿协议书
- 消防项目合作协议书
- 体育中心场地租赁合同
- 洒水车标准租赁合同
- 三方房产抵债协议书
- 2025年度爱读书学长主办的读书挑战赛组织合同
- 2024年沧州经济开发区招聘社区工作者笔试真题
- 2025年安徽省铜陵市公安局交警支队招聘交通辅警14人历年高频重点提升(共500题)附带答案详解
- 零碳智慧园区解决方案
- 2025年林权抵押合同范本
- 2024年北师大版四年级数学上学期学业水平测试 期末卷(含答案)
- 2024年高考物理一轮复习讲义(新人教版):第七章动量守恒定律
- 人教版八年级上学期物理期末复习(压轴60题40大考点)
- 企业环保知识培训课件
- 浙江省宁波市慈溪市2023-2024学年高三上学期语文期末测试试卷
- 暨南大学《微观经济学》2023-2024学年第一学期期末试卷
评论
0/150
提交评论