高三数学复习教案:随机事件的概率教案_第1页
高三数学复习教案:随机事件的概率教案_第2页
高三数学复习教案:随机事件的概率教案_第3页
高三数学复习教案:随机事件的概率教案_第4页
高三数学复习教案:随机事件的概率教案_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高三数学复习教案:随机事件的概率教案【】欢送来到查字典数学网高三数学教案栏目,教案逻辑思路明晰,符合认识规律,培养学生自主学习习惯和才能。因此小编在此为您编辑了此文:高三数学复习教案:随机事件的概率教案希望能为您的提供到帮助。本文题目:高三数学复习教案:随机事件的概率教案考点目的定位1.理解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.2.理解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.3.理解互相独立事件的意义,会用互相独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.复习方略指南概率是新课程中新增加部分的主

2、要内容之一.这一内容是在学习排列、组合等计数知识之后学习的,主要内容为等可能性事件的概率、互斥事件有一个发生的概率及互相独立事件同时发生的概率.这一内容从2019年被列入新课程高考的考试说明.在2019,2019,2019,2019,2019这五年高考中,新课程试卷每年都有一道概率解答题,并且这五年的命题趋势是:从分值上看,从10分进步到17分,从题目的位置看,2019年为第17题,2019年为第18题,2019年为第19题,2019年为第20题即题目的位置后移,2019年两题分值增加到17分.从概率在试卷中的分数比与课时比看,在试卷中的分数比12150=112.5是在数学中课时比约为1133

3、0=130的2.4倍.概率试题表达了考试中心提出的突出应用才能考察以及突出新增加内容的教学价值和应用功能的指导思想,在命题时,进步了分值,进步了难度,并设置了灵敏的题目情境,如普法考试、串联并联络统、计算机上网、产品合格率等,所以在概率复习中要注意全面复习,加强根底,注重应用.11.1 随机事件的概率知识梳理1.随机事件:在一定条件下可能发生也可能不发生的事件.2.必然事件:在一定条件下必然要发生的事件.3.不可能事件:在一定条件下不可能发生的事件.4.事件A的概率:在大量重复进展同一试验时,事件A发生的频率 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作PA.由定义可

4、知01,显然必然事件的概率是1,不可能事件的概率是0.5.等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个根本领件,通常此试验中的某一事件A由几个根本领件组成.假如一次试验中可能出现的结果有n个,即此试验由n个根本领件组成,而且所有结果出现的可能性都相等,那么每一根本领件的概率都是 .假如某个事件A包含的结果有m个,那么事件A的概率PA= .6.使用公式PA= 计算时,确定m、n的数值是关键所在,其计算方法灵敏多变,没有固定的形式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.点击双基1.从1,2,9这九个数中,随机抽取3个不同的数,那么这3个数的

5、和为偶数的概率是A. B. C. D.解析:根本领件总数为C ,设抽取3个数,和为偶数为事件A,那么A事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C ,后者C C .A中根本领件数为C +C C .符合要求的概率为 = .答案:C2.某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位.假设采取抽签的方式确定他们的演讲顺序,那么一班的3位同学恰好被排在一起指演讲序号相连,而二班的2位同学没有被排在一起的概率为A. B. C. D.解析:10位同学总参赛次序A .一班3位同学恰好排在一起,而二班的2位同学没有排在一起的方法数为先将一

6、班3人捆在一起A ,与另外5人全排列A ,二班2位同学不排在一起,采用插空法A ,即A A A .所求概率为 = .答案:B3.将一颗质地均匀的骰子它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具先后抛掷3次,至少出现一次6点向上的概率是A. B. C. D.解析:质地均匀的骰子先后抛掷3次,共有666种结果.3次均不出现6点向上的掷法有555种结果.由于抛掷的每一种结果都是等可能出现的,所以不出现6点向上的概率为 = ,由对立事件概率公式,知3次至少出现一次6点向上的概率是1- = .答案:D4.一盒中装有20个大小一样的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出

7、4个,求至少有3个红球的概率为_.解析:恰有3个红球的概率P1= = .有4个红球的概率P2= = .至少有3个红球的概率P=P1+P2= .答案:5.在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.今从每个袋中任取一张卡片,那么取出的两张卡片上数字之和恰为7的概率为_.解析:P= = .答案:典例剖析【例1】用数字1,2,3,4,5组成五位数,求其中恰有4个一样数字的概率.解:五位数共有55个等可能的结果.如今求五位数中恰有4个一样数字的结果数:4个一样数字的取法有C 种,另一个不同数字的取法有C 种.而这取出的五个数字共可排出C 个不同的五位数,故恰有4个一样数字的五位数的结果有

8、C C C 个,所求概率P= = .答:其中恰恰有4个一样数字的概率是 .【例2】 从男女生共36人的班中,选出2名代表,每人中选的时机均等.假如选得同性代表的概率是 ,求该班中男女生相差几名?解:设男生有x名,那么女生有36-x人,选出的2名代表是同性的概率为P= = ,即 + = ,解得x=15或21.所以男女生相差6人.【例3】把4个不同的球任意投入4个不同的盒子内每盒装球数不限,计算:1无空盒的概率;2恰有一个空盒的概率.解:4个球任意投入4个不同的盒子内有44种等可能的结果.1其中无空盒的结果有A 种,所求概率P= = .答:无空盒的概率是 .2先求恰有一空盒的结果数:选定一个空盒有

9、C 种,选两个球放入一盒有C A 种,其余两球放入两盒有A 种.故恰有一个空盒的结果数为C C A A ,所求概率PA= = .答:恰有一个空盒的概率是 .深化拓展把n+1个不同的球投入n个不同的盒子nN*.求:1无空盒的概率;2恰有一空盒的概率.解:1 .2 .【例4】某人有5把钥匙,一把是房门钥匙,但忘记了开房门的是哪一把.于是,他逐把不重复地试开,问:1恰好第三次翻开房门锁的概率是多少?2三次内翻开的概率是多少?3假如5把内有2把房门钥匙,那么三次内翻开的概率是多少?解:5把钥匙,逐把试开有A 种等可能的结果.1第三次翻开房门的结果有A 种,因此第三次翻开房门的概率PA= = .2三次内

10、翻开房门的结果有3A 种,因此,所求概率PA= = .3方法一:因5把内有2把房门钥匙,故三次内打不开的结果有A A 种,从而三次内翻开的结果有A -A A 种,所求概率PA= = .方法二:三次内翻开的结果包括:三次内恰有一次翻开的结果有C A A A 种;三次内恰有2次翻开的结果有A A 种.因此,三次内翻开的结果有C A A A +A A 种,所求概率PA= = .特别提示1.在上例1中,读者如何解释以下两种解法的意义.PA= = 或PA= = .2.仿照1中,你能解例题中的2吗?闯关训练夯实根底1.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概

11、率为A. B. C. D.解析:P= = .答案:B2.甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题,那么甲抽到判断题,乙抽到选择题的概率是A. B. C. D.解析:甲、乙二人依次抽一题有C C 种方法,而甲抽到判断题,乙抽到选择题的方法有C C 种.P= = .答案:C3.从数字1、2、3、4、5中,随机抽取3个数字允许重复组成一个三位数,其各位数字之和等于9的概率为A. B. C. D.解析:从数字1、2、3、4、5中,允许重复地随机抽取3个数字,这三个数字和为9的情况为5、2、2;5、3、1;4、3、2;4、4、1;3、3、3.概

12、率为 = .答案:D4.一次二期课改经历交流会打算交流试点学校的论文5篇和非试点学校的论文3篇.假设任意排列交流次序,那么最先和最后交流的论文都为试点学校的概率是_.结果用分数表示解析:总的排法有A 种.最先和最后排试点学校的排法有A A 种.概率为 = .答案:5.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.1甲抽到选择题,乙抽到判断题的概率是多少?2甲、乙二人中至少有一人抽到选择题的概率是多少?分析:1是等可能性事件,求根本领件总数和A包含的根本领件数即可.2分类或间接法,先求出对立事件的概率.解:1根本领件总数甲、乙依次抽一题有C

13、 C 种,事件A包含的根本领件数为C C ,故甲抽到选择题,乙抽到判断题的概率为 = .2A包含的根本领件总数分三类:甲抽到选择题,乙抽到判断题有C C ;甲抽到选择题,乙也抽到选择题有C C ;甲抽到判断题,乙抽到选择题有C C .共C C +C C +C C .根本领件总数C C ,甲、乙二人中至少有一人抽到选择题的概率为 = 或P = = ,PA=1-P = .6.把编号为1到6的六个小球,平均分到三个不同的盒子内,求:1每盒各有一个奇数号球的概率;2有一盒全是偶数号球的概率.解:6个球平均分入三盒有C C C 种等可能的结果.1每盒各有一个奇数号球的结果有A A 种,所求概率PA= =

14、 .2有一盒全是偶数号球的结果有C C C C ,所求概率PA= = .培养才能7.8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:1A、B两组中有一组恰有两支弱队的概率;2A组中至少有两支弱队的概率.1解法一:三支弱队在同一组的概率为故有一组恰有两支弱队的概率为1- = .解法二:有一组恰有两支弱队的概率为2解法一:A组中至少有两支弱队的概率为 + = .解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是一样的,所以A组中至少有两支弱队的概率为 .8.从1,2,10这10个数字中有放回地抽取3次,每次抽取一个数字,试求3次

15、抽取中最小数为3的概率.解:有放回地抽取3次共有103个结果,因最小数为3又可分为:恰有一个3,恰有两个3,恰有三个3.故最小数为3的结果有C 72+C 7+C ,所求概率PA= =0.169.答:最小数为3的概率为0.169.探究创新9.有点难度哟!将甲、乙两颗骰子先后各抛一次,a、b分别表示抛掷甲、乙两颗骰子所出现的点数.1假设点Pa,b落在不等式组 表示的平面区域的事件记为A,求事件A的概率;2假设点Pa,b落在直线x+y=mm为常数上,且使此事件的概率最大,求m的值.解:1根本领件总数为66=36.当a=1时,b=1,2,3;当a=2时,b=1,2;当a=3时,b=1.共有1,1,1,

16、2,1,3,2,1,2,2,3,16个点落在条件区域内,PA= = .2当m=7时,1,6,2,5,3,4,4,3,5,2,6,1共有6种,此时P= = 最大.思悟小结求解等可能性事件A的概率一般遵循如下步骤:1先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A.2再确定所研究的事件A是什么,事件A包括结果有多少,即求出m.3应用等可能性事件概率公式P= 计算.老师下载中心教学点睛1.一个随机事件的发生既有随机性对单次试验,又存在着统计规律对大量重复试验,这是偶尔性和必然性的对立统一.2.随机事件A的概率PA满足01.3PA= 既是等可能性事件的概率的定义,又是计算这种概率的根本方

17、法.拓展题例【例1】 某油漆公司发出10桶油漆,其中白漆5桶,黑漆3桶,红漆2桶.在搬运中所有标签脱落,交货人随意将这些标签重新贴上,问一个定货3桶白漆、2桶黑漆和1桶红漆的顾客,按所定的颜色如数得到定货的概率是多少?解:PA= = .答:顾客按所定的颜色得到定货的概率是 .【例2】 一个口袋里共有2个红球和8个黄球,从中随机地接连取3个球,每次取一个.设恰有一个红球=A,第三个球是红球=B.求在以下条件下事件A、B的概率.1不返回抽样;2返回抽样.解:1不返回抽样,PA= = ,PB= = .语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。假如有选择循序渐进地让学生背诵一些优秀篇

18、目、精彩段落,对进步学生的程度会大有裨益。如今,不少语文老师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果老师费力,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的为难场面的关键就是对文章读的不熟。常言道“书读百遍,其义自见,假如有目的、有方案地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然浸透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和开展。2返回抽样,观察内容

19、的选择,我本着先静后动,由近及远的原那么,有目的、有方案的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进展观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。我加以肯定说“这是乌云滚滚。当幼儿看到闪电时,我告诉他“这叫电光闪闪

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论