【数学】1.2.1《排列(一)》课件-PPT课件_第1页
【数学】1.2.1《排列(一)》课件-PPT课件_第2页
【数学】1.2.1《排列(一)》课件-PPT课件_第3页
【数学】1.2.1《排列(一)》课件-PPT课件_第4页
【数学】1.2.1《排列(一)》课件-PPT课件_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.2.1排列(一)创设情境,引出排列问题探究 在1.1节的例9中我们看到,用分步乘法计数原理解决这个问题时,因做了一些重复性工作而显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?探究:问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?上面两个问题有什么共同特征?可以用怎样的数学模型来刻画?探究:问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?分析:把

2、题目转化为从甲、乙、丙3名同学中选2名,按照参加上午的活动在前,参加下午的活动在后的顺序排列,求一共有多少种不同的排法? 上午下午相应的排法甲乙丙乙甲丙丙甲乙甲丙甲乙乙甲乙丙丙甲丙乙第一步:确定参加上午活动的同学即从3名中任 选1名,有3种选法.第二步:确定参加下午活动的同学,有2种方法根据分步计数原理:32=6 即共6种方法。把上面问题中被取的对象叫做元素,于是问题就可以叙述为: 从3个不同的元素a,b,c中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?ab, ac, ba, bc, ca, cb问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少

3、个不同的三位数? 从4个不同的元素a,b,c,d 中任取3个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?abc,abd,acb,acd,adb,adc; bac,bad,bca,bcd,bda,bdc;cab,cad,cba,cbd,cda,cdb; dab,dac,dba,dbc,dca,dcb.有此可写出所有的三位数:123,124,132,134,142,143; 213,214,231,234,241,243,312,314,321,324,341,342; 412,413,421,423,431,432。学车问答 ask.jsyst 学车问题 开车问题 学车怎么办?驾校大

4、全 jiaxiao.jsyst 中国驾校报名 考试 理论学习 地址 介绍英格驾考 exam.jsyst/ 驾考单机版软件车类小游戏 game.jsyst 学车小游戏大全基本概念1、排列:一般地,从n个不同中取出m (m n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。说明:1、元素不能重复。n个中不能重复,m个中也不能重复。2、“按一定顺序”就是与位置有关,这是判断一个问题是否是排列问题的关键。3、两个排列相同,当且仅当这两个排列中的元素完全相同,而且元素的排列顺序也完全相同。4、mn时的排列叫选排列,mn时的排列叫全排列。5、为了使写出的所有排列情况既不重复也

5、不遗漏,最好采用“树形图”。例1、下列问题中哪些是排列问题?(1)10名学生中抽2名学生开会(2)10名学生中选2名做正、副组长(3)从2,3,5,7,11中任取两个数相乘(4)从2,3,5,7,11中任取两个数相除(5)20位同学互通一次电话(6)20位同学互通一封信(7)以圆上的10个点为端点作弦(8)以圆上的10个点中的某一点为起点,作过另一个点的射线(9)有10个车站,共需要多少种车票?(10)有10个车站,共需要多少种不同的票价?2、排列数: 从n个不同的元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同的元素中取出m个元素的排列数。用符号 表示。“排列”和“排列数”有什么区

6、别和联系?排列数,而不表示具体的排列。所有排列的个数,是一个数;“排列数”是指从个不同元素中,任取个元素的所以符号只表示“一个排列”是指:从个不同元素中,任取按照一定的顺序排成一列,不是数;个元素问题中是求从个不同元素中取出个元素的排列数,记为 ,已经算得问题2中是求从4个不同元素中取出3个元素的排列数,记为,已经算出探究:从n个不同元素中取出2个元素的排列数 是多少?呢?呢? 第1位第2位第3位第m位n种(n-1)种(n-2)种(n-m+1)种例1、计算:(1)(2)(3)例2、解方程:例3、求证:例5、求 的值.例4若,则 , 排列问题,是取出m个元素后,还要按一定的顺序排成一列,取出同样的m个元素,只要排列顺序

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论