版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABCD对角线AC与BD交于点O,且AD3,AB5,在AB延长线上取一点E,使BEAB,连接OE交BC于F,则BF的长为()ABCD12如图,ABC的面积为8cm2 , AP垂直B的平分线BP于P,则PBC的面积为( )A2cm2B3
2、cm2C4cm2D5cm23不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征甲同学:它有4个面是三角形;乙同学:它有8条棱该模型的形状对应的立体图形可能是()A三棱柱B四棱柱C三棱锥D四棱锥4如图所示,有一条线段是()的中线,该线段是( ). A线段GHB线段ADC线段AED线段AF5若一元二次方程x22x+m=0有两个不相同的实数根,则实数m的取值范围是()Am1Bm1Cm1Dm16已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PEAB于点E,作PFBC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数
3、关系的是()ABCD7如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则BDM的周长最小值为( )A5 cmB6 cmC8 cmD10 cm8如图,右侧立体图形的俯视图是( )A B C D9如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )ABCD10不论x、y为何值,用配方法可说明代数式x2+4y2+6x4y
4、+11的值()A总不小于1 B总不小于11C可为任何实数 D可能为负数11下列图形都是由同样大小的菱形按照一定规律所组成的,其中第个图形中一共有3个菱形,第个图形中一共有7个菱形,第个图形中一共有13个菱形,按此规律排列下去,第个图形中菱形的个数为()A73B81C91D10912在平面直角坐标系中,将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是( )A(2,4)B(1,5)C(1,-3)D(-5,5)二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABC中,AB4,AC3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO
5、的最大值为_1425位同学10秒钟跳绳的成绩汇总如下表:人数1234510次么跳绳次数的中位数是_.15若是关于的完全平方式,则_16已知关于x的一元二次方程kx2+3x4k+6=0有两个相等的实数根,则该实数根是_17如图,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kx(k为常数,k0)的图像上,正方形ADEF的面积为4,且BF=2AF,则k值为_.18小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交
6、站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟下列说法:公交车的速度为400米/分钟;小刚从家出发5分钟时乘上公交车;小刚下公交车后跑向学校的速度是100米/分钟;小刚上课迟到了1分钟其中正确的序号是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了
7、响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?20(6分)如图,在ABCD中,过点A作AEBC于点E,AFDC于点F,AE=AF(1)求证:四边形ABCD是菱形;(2)若EAF=60,CF=2,求AF的长21(
8、6分)如图,一次函数y=kx+b(k、b为常数,k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数,且n0)的图象在第二象限交于点CCDx轴,垂足为D,若OB=2OA=3OD=1(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求CDE的面积;(3)直接写出不等式kx+bnx的解集22(8分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名)1323241每人月工资(元)2100084002025220018001600950请你根据上
9、述内容,解答下列问题:(1)该公司“高级技工”有 名;(2)所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;(3)小张到这家公司应聘普通工作人员请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平23(8分)如图,在正方形ABCD中,AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求EAF的度数如图,在RtABD中,BAD=90,AB=AD,点M,N是BD边上的任意两点,且MAN=45,将ABM绕点A逆
10、时针旋转90至ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由在图中,若EG=4,GF=6,求正方形ABCD的边长24(10分)图1是一商场的推拉门,已知门的宽度米,且两扇门的大小相同(即),将左边的门绕门轴向里面旋转,将右边的门绕门轴向外面旋转,其示意图如图2,求此时与之间的距离(结果保留一位小数).(参考数据:,)25(10分)如图,已知点D、E为ABC的边BC上两点AD=AE,BD=CE,为了判断B与C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据解:过点A作AHBC,垂足为H在ADE中,AD=AE(已知)AHBC(所作)DH=EH(等腰
11、三角形底边上的高也是底边上的中线)又BD=CE(已知)BD+DH=CE+EH(等式的性质)即:BH= 又 (所作)AH为线段 的垂直平分线AB=AC(线段垂直平分线上的点到线段两个端点的距离相等) (等边对等角)26(12分)如图,点A,B,C都在抛物线y=ax22amx+am2+2m5(其中a0)上,ABx轴,ABC=135,且AB=1(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);(2)求ABC的面积(用含a的代数式表示);(3)若ABC的面积为2,当2m5x2m2时,y的最大值为2,求m的值27(12分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定
12、采取适当的降价措施经调査发现,每件商品每降价1元,商场平均每天可多售出2件若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加_件,每件商品,盈利_元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:EFBEOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值【详解】取AB的中点M,连接OM,四边形
13、ABCD是平行四边形,ADBC,OB=OD,OMADBC,OM=AD=3=,EFBEOM,AB=5,BE=AB,BE=2,BM=,EM=+2=,BF=,故选A【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识解此题的关键是准确作出辅助线,合理应用数形结合思想解题2、C【解析】延长AP交BC于E,根据AP垂直B的平分线BP于P,即可求出ABPBEP,又知APC和CPE等底同高,可以证明两三角形面积相等,即可求得PBC的面积【详解】延长AP交BC于EAP垂直B的平分线BP于P,ABPEBP,APBBPE90在APB和EPB中,APB=EPBBP=BPABP=EBP,APBEPB(AS
14、A),SAPBSEPB,APPE,APC和CPE等底同高,SAPCSPCE,SPBCSPBE+SPCE=12SABC4cm1故选C【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出SPBCSPBE+SPCE=12SABC3、D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状4、B【解析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得【详解】根据三角形中线的定义知:线段AD是ABC的中线故选B【点睛】本题考查了三角形的中线,
15、解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线5、D【解析】分析:根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围详解:方程有两个不相同的实数根, 解得:m1故选D点睛:本题考查了根的判别式,牢记“当0时,方程有两个不相等的实数根”是解题的关键6、A【解析】由题意可得:APE和PCF都是等腰直角三角形AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长则y=2x,为正比例函数故选A7、C【解析】连接AD,由于ABC是等腰三角形,点D是BC边的中点,故ADBC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB
16、的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论【详解】如图,连接ADABC是等腰三角形,点D是BC边的中点,ADBC,SABC=BCAD=4AD=12,解得:AD=6(cm)EF是线段AB的垂直平分线,点B关于直线EF的对称点为点A,AD的长为BM+MD的最小值,BDM的周长最短=(BM+MD)+BD=AD+BC=6+4=6+2=8(cm)故选C【点睛】本题考查的是轴对称最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键8、A【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图9、
17、C【解析】列表得,120-11(1,1)(1,2)(1,0)(1,-1)2(2,1)(2,2)(2,0)(2,-1)0(0,1)(0,2)(0,0)(0,-1)-1(-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.考点:用列表法(或树形图法)求概率.10、A【解析】利用配方法,根据非负数的性质即可解决问题;【详解】解:x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,又(x+3)20,(2y-1)20,x2+4y2+6x-4y+111,故选:A【点睛】本题考查配方法的应用,非负数的性质
18、等知识,解题的关键是熟练掌握配方法.11、C【解析】试题解析:第个图形中一共有3个菱形,3=12+2;第个图形中共有7个菱形,7=22+3;第个图形中共有13个菱形,13=32+4;,第n个图形中菱形的个数为:n2+n+1;第个图形中菱形的个数92+9+1=1故选C考点:图形的变化规律.12、B【解析】试题分析:由平移规律可得将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是(1,5),故选B考点:点的平移二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】过O作OFAO且使OF=AO,连接AF、CF,可知AOF是等腰直角三角形,进而可得AF=AO,根
19、据正方形的性质可得OB=OC,BOC=90,由锐角互余的关系可得AOB=COF,进而可得AOBCOF,即可证明AB=CF,当点A、C、F三点不共线时,根据三角形的三边关系可得AC+CFAF,当点A、C、F三点共线时可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.【详解】如图,过O作OFAO且使OF=AO,连接AF、CF,AOF=90,AOF是等腰直角三角形,AF=AO,四边形BCDE是正方形,OB=OC,BOC=90,BOC=AOF=90,AOB+AOC=COF+AOC,AOB=COF,又OB=OC,AO=OF,AOBCOF,CF=AB=4,当点A、C、F三点
20、不共线时,AC+CFAF,当点A、C、F三点共线时,AC+CF=AC+AB=AF=7,AFAC+CF=7,AF的最大值是7,AF=AO=7,AO=.故答案为【点睛】本题考查正方形的性质,全等三角形的判定与性质,熟练掌握相关定理及性质是解题关键.14、20【解析】分析:根据中位数的定义进行计算即可得到这组数据的中位数.详解:由中位数的定义可知,这次跳绳次数的中位数是将这25位同学的跳绳次数按从小到大排列后的第12个和13个数据的平均数,由表格中的数据分析可知,这组数据按从小到大排列后的第12个和第13个数据都是20,这组跳绳次数的中位数是20.故答案为:20.点睛:本题考查的是怎样确定一组数据的
21、中位数,解题的关键是弄清“中位数”的定义:“把一组数据按从小到大的顺序排列后,若数据组中共有奇数个数据,则最中间一个数据是该组数据的中位数;若数据组中数据的个数为偶数个,则最中间两个数据的平均数是这组数据的中位数”.15、1或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=8,进而求出答案详解:x2+2(m-3)x+16是关于x的完全平方式,2(m-3)=8,解得:m=-1或1,故答案为-1或1点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键16、1【解析】根据二次项系数非零结合根的判别式=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出
22、k值,将其代入原方程中解之即可得出原方程的解【详解】解:关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,解得:k=,原方程为x1+4x+4=0,即(x+1)1=0,解得:x=-1故答案为:-1【点睛】本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当=0时,方程有两个相等的实数根”是解题的关键17、-1【解析】试题分析:正方形ADEF的面积为4,正方形ADEF的边长为2,BF=2AF=4,AB=AF+BF=2+4=1设B点坐标为(t,1),则E点坐标(t-2,2),点B、E在反比例函数y=的图象上,k=1t=2(t-2),解得t=-1,k=-1考点:反比
23、例函数系数k的几何意义18、【解析】由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.【详解】解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000m,则其速度为20005=400米/分钟,故正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故正确;公
24、交车一共行驶了2800400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟4分钟,故错误,再由图可知小明跑步时间为3003=100米/分钟,故正确.故正确的序号是:.【点睛】本题考查了一次函数的应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人【解析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)
25、4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查(2)最喜欢足球活动的有10人,最喜欢足球活动的人占被调查人数的20% (3)全校学生人数:400(130%24%26%)=40020%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000=720(人)【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.20、 (1)见解析;(2)2【解析】(1) 方法一: 连接AC, 利用角平分线判定定理
26、, 证明DA=DC即可; 方法二: 只要证明AEBAFD. 可得AB=AD即可解决问题;(2) 在RtACF, 根据AF=CFtanACF计算即可.【详解】(1)证法一:连接AC,如图AEBC,AFDC,AE=AF,ACF=ACE,四边形ABCD是平行四边形,ADBCDAC=ACBDAC=DCA,DA=DC,四边形ABCD是菱形证法二:如图,四边形ABCD是平行四边形,B=DAEBC,AFDC,AEB=AFD=90,又AE=AF,AEBAFDAB=AD,四边形ABCD是菱形(2)连接AC,如图AEBC,AFDC,EAF=60,ECF=120,四边形ABCD是菱形,ACF=60,在RtCFA中,
27、AF=CFtanACF=2【点睛】本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。21、(1)y=2x+1;y=80 x;(2)140;(3)x10,或4x0;【解析】(1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C的坐标,进而求出反比例函数的解析式.(2)联立方程组求解出交点坐标即可.(3)观察函数图象,当函数y=kx+b的图像处于y=nx下方或与其有重合点时,x的取值范围即为kx+bnx的解集.【详解】(1)由已知,OA=6,OB=1,OD=4,CDx轴,OBCD,ABOACD,CD=20,点C坐标
28、为(4,20),n=xy=80.反比例函数解析式为:y=,把点A(6,0),B(0,1)代入y=kx+b得:,解得:.一次函数解析式为:y=2x+1,(2)当=2x+1时,解得,x1=10,x2=4,当x=10时,y=8,点E坐标为(10,8),SCDE=SCDA+SEDA=.(3)不等式kx+b,从函数图象上看,表示一次函数图象不低于反比例函数图象,由图象得,x10,或4x0.【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图像解不等式.22、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些(4)能反
29、映该公司员工的月工资实际水平【解析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=501323241=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平用1700元或1600元来介
30、绍更合理些(4)(元)能反映该公司员工的月工资实际水平23、 (1) 45(1) MN1=ND1+DH1理由见解析;(3)11.【解析】(1)先根据AGEF得出ABE和AGE是直角三角形,再根据HL定理得出ABEAGE,故可得出BAE=GAE,同理可得出GAF=DAF,由此可得出结论;(1)由旋转的性质得出BAM=DAH,再根据SAS定理得出AMNAHN,故可得出MN=HN再由BAD=90,AB=AD可知ABD=ADB=45,根据勾股定理即可得出结论;(3)设正方形ABCD的边长为x,则CE=x-4,CF=x-2,再根据勾股定理即可得出x的值【详解】解:(1)在正方形ABCD中,B=D=90,
31、AGEF,ABE和AGE是直角三角形在RtABE和RtAGE中,ABEAGE(HL),BAE=GAE同理,GAF=DAFEAF=EAG+FAG=BAD=45(1)MN1=ND1+DH1由旋转可知:BAM=DAH,BAM+DAN=45,HAN=DAH+DAN=45HAN=MAN在AMN与AHN中,AMNAHN(SAS),MN=HNBAD=90,AB=AD,ABD=ADB=45HDN=HDA+ADB=90NH1=ND1+DH1MN1=ND1+DH1(3)由(1)知,BE=EG=4,DF=FG=2设正方形ABCD的边长为x,则CE=x-4,CF=x-2CE1+CF1=EF1,(x-4)1+(x-2)
32、1=101解这个方程,得x1=11,x1=-1(不合题意,舍去)正方形ABCD的边长为11【点睛】本题考查的是几何变换综合题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中24、1.4米.【解析】过点B作BEAD于点E,过点C作CFAD于点F,延长FC到点M,使得BE=CM,则EM=BC,在RtABE、RtCDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在RtMEF中利用勾股定理即可求出EM的长,此题得解【详解】过点B作BEAD于点E,过点C作CFAD于点F,延长FC到点M,使得BE=CM,如图所示,AB=CD,AB+CD=AD=2,AB=CD=1,在
33、RtABE中,AB=1,A=37,BE=ABsinA0.6,AE=ABcosA0.8,在RtCDF中,CD=1,D=45,CF=CDsinD0.7,DF=CDcosD0.7,BEAD,CFAD,BECM,又BE=CM,四边形BEMC为平行四边形,BC=EM,CM=BE在RtMEF中,EF=ADAEDF=0.5,FM=CF+CM=1.3,EM=1.4,B与C之间的距离约为1.4米【点睛】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC的长度是解题的关键25、见解析【解析】根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可
34、.【详解】过点A作AHBC,垂足为H在ADE中,AD=AE(已知),AHBC(所作),DH=EH(等腰三角形底边上的高也是底边上的中线)又BD=CE(已知),BD+DH=CE+EH(等式的性质),即:BH=CHAHBC(所作),AH为线段BC的垂直平分线AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)B=C(等边对等角)【点睛】本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;26、(1)(m,2m2);(2)SABC =;(3)m的值为或10+2【解析】分析:(1)利用配方法将二次函数
35、解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由ABx轴且AB1,可得出点B的坐标为(m2,1a2m2),设BDt,则点C的坐标为(m2t,1a2m2t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出SABC的值;(3)由(2)的结论结合SABC2可求出a值,分三种情况考虑:当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;当2m2m2m2,即2m2时,xm时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;当m2m2,即m2时,x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京工业大学浦江学院《图形与标志设计》2021-2022学年第一学期期末试卷
- 非特异性免疫说课稿
- 深圳市万豪御景苑施工组织设计
- 南京工业大学浦江学院《企业家精神》2022-2023学年第一学期期末试卷
- 【初中化学】化学反应的定量关系单元综合题-2024-2025学年九年级化学人教版上册
- 南京工业大学浦江学院《公益组织内部治理和战略管理》2022-2023学年第一学期期末试卷
- 精神科责任自负协议书(2篇)
- 南京工业大学《有机波谱分析》2022-2023学年第一学期期末试卷
- 南京工业大学《无机非金属材料工学》2021-2022学年第一学期期末试卷
- 教育4-5岁幼儿尊重并接纳不同群体的实施方案
- 2024年重庆市高考物理试卷(含答案解析)
- 2019新人教版高中生物选择性必修二全册重点知识点归纳总结
- 2023版国开电大本科《高级财务会计》在线形考(任务一至四)试题及答案
- 工业互联网安全技术 课件全套 魏旻 第1-9章 绪论、工业互联网安全体系架构 -工业互联网安全测试
- 痛风病完整课件
- 湖北汉江王甫洲水力发电限责任公司公开招聘工作人员【6人】高频考题难、易错点模拟试题(共500题)附带答案详解
- 慢性阻塞性肺疾病案例分析护理
- 孤残儿童护理理论知识考试题库及答案
- 2024年兴业银行股份有限公司校园招聘考试试题及参考答案
- 2024年计算机软考(初级)网络管理员考试题库大全(含真题等)
- 北师大版三年级数学上册第六单元《乘法》(大单元教学设计)
评论
0/150
提交评论