代入消元法17_第1页
代入消元法17_第2页
代入消元法17_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、消元解二元一次方程组教学设计一、内容和内容解析1内容代入消元法解二元一次方程组2内容解析二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,在平面直角坐标系中求两直线交点坐标等解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元二、目标和目标解析1教学目标(1)会用代入消元法解一些简单的二元一次方程组(2)

2、理解解二元一次方程组的思路是消元,体会化归思想2教学目标解析(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,(2)要让学生经历探究的过程体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想三、教学问题诊断分析1学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路2解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。本节

3、教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。四、教学过程设计1创设情境,提出问题问题1篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16x=6,则胜6场,负4场教师追问:你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:能设胜x场,负y场根据题意,得我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4显然这样的方法需要一个个尝试,有些麻烦,

4、能不能像解一元一次方程那样来求出方程组的解呢?这节课我们就来探究如何解二元一次方程组设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫问题2 对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。师生活动:根据上面分析,你们会解这个方程组了吗?学生回答:会由,得y=10-x 把代入,得2x+(10-x)=16x=6设计意图:共同探究,体会消元的过程问题3 教师追问:你能把代入吗?试

5、一试?师生活动:学生回答:不能,通过尝试,x抵消了设计意图:由于方程是由方程,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点教师追问:你能求y的值吗?师生活动:学生回答:把x=6代入得y=4教师追问:还能代入别的方程吗?学生回答:能,但是没有代入简便教师追问:你能写出这个方程组的解,并给出问题的答案吗?学生回答:x=6,y=4,这个队胜6场,负4场设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。师生活动:先让学生独立思考,再追问在这种解法中,哪一步最关键?为什么?学生回答:代入这一步教师总结:这种方法叫代入消元法。教师追问:你能先消x吗?学生纷纷动手完成。设

6、计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫2 应用新知,拓展思维例 用代入法解二元一次方程组师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法3加深认识,巩固提高练习 用代入法解二元一次方程组 设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组4归纳总结,知识升华师生活动,共同回顾本节课的学习过程,并回答以下问题1 代入消元法解二元一次方程组有哪些步骤?2 解二元一次方程组的基本思路是什么?3在探究解法的过程中用到了哪些思想方法?4你还有哪些收获?设计意图:通过这一活动的设计,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论