湖北省黄冈市新联考2022年高考数学考前最后一卷预测卷含解析_第1页
湖北省黄冈市新联考2022年高考数学考前最后一卷预测卷含解析_第2页
湖北省黄冈市新联考2022年高考数学考前最后一卷预测卷含解析_第3页
湖北省黄冈市新联考2022年高考数学考前最后一卷预测卷含解析_第4页
湖北省黄冈市新联考2022年高考数学考前最后一卷预测卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;根据甲

2、同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间110,120内;乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;乙同学连续九次测验成绩每一次均有明显进步其中正确的个数为()A4B3C2D12设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )ABCD3等比数列的前项和为,若,则( )ABCD4若,则“”的一个充分不必要条件是ABC且D或5已知全集U=x|x24,xZ,A=1,2,则CUA=( )A-1B-1,0C-2,-1,0D-2,-1,0,1,26已知函数,则下列结论错误的是( )A函数的最小正周期为B函数的图象关于点对

3、称C函数在上单调递增D函数的图象可由的图象向左平移个单位长度得到7若向量,则( )A30B31C32D338为虚数单位,则的虚部为( )ABCD9若复数z满足,则( )ABCD10在菱形中,分别为,的中点,则( )ABC5D11已知,分别是三个内角,的对边,则( )ABCD12已知全集,集合,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13 “石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则平局;若不同,则石头克剪子,剪子克布,布克石头.甲、乙两人玩一次该游戏,则甲不输的概率是_.14已知向量,且,则_.15函数的单调增区间为

4、_.16根据如图所示的伪代码,若输入的的值为2,则输出的的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在50,100内,并得到如下的频数分布表:分数段50,60)60,70)70,80)80,90)90,100人数51515123(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”请将下面的列联表补充完整,并判断是否有的把握认为“法律

5、知识竞赛成绩是否合格”与“是否是高一新生”有关?合格不合格合计高一新生12非高一新生6合计(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率参考公式及数据:,其中18(12分)已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的等差数列(1)若数列是常数列,求数列的通项公式;(2)若是不为零的常数),求证:数列是等差数列;(3)若(为常数,),求证:对任意的恒成立19(12分)已知数列满足,(1)求数列的通项公式;(2)若,求数列的前项和20(12分)已知函数.(1)求不等式的解

6、集;(2)若函数的最大值为,且,求的最小值.21(12分)如图,在正四棱锥中,底面正方形的对角线交于点且(1)求直线与平面所成角的正弦值;(2)求锐二面角的大小22(10分)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可【详解】甲同学的成绩折线图具有较好的对称性,最高130分,平均成绩为低于130分,错误;根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间110,120

7、内,正确;乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,正确;乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故不正确故选:C【点睛】本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题2D【解析】利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.3D【解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,所以,故解得:

8、,从而公比;那么,故选D考点:等比数列4C【解析】,当且仅当 时取等号.故“且 ”是“”的充分不必要条件.选C5C【解析】先求出集合U,再根据补集的定义求出结果即可【详解】由题意得U=x|x24,xZ=x|-2x2,xZ=-2,-1,0,1,2,A=1,2,CUA=-2,-1,0故选C【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题6D【解析】由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,所以B正确;当时,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题

9、考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.7C【解析】先求出,再与相乘即可求出答案.【详解】因为,所以.故选:C.【点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.8C【解析】利用复数的运算法则计算即可.【详解】,故虚部为.故选:C.【点睛】本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.9D【解析】先化简得再求得解.【详解】所以.故选:D【点睛】本题主要考查复数的运算和模的计算,意在考查学生对这些知识的理解掌握水平.10B【解析】据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用

10、坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.11C【解析】原式由正弦定理化简得,由于,可求的值.【详解】解:由及正弦定理得.因为,所以代入上式化简得.由于,所以.又,故.故选:C.【点睛】本题主要考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.12D【解析】根据函数定义域的求解方法可分别求得集合,由补集

11、和交集定义可求得结果.【详解】,.故选:.【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】用树状图法列举出所有情况,得出甲不输的结果数,再计算即得.【详解】由题得,甲、乙两人玩一次该游戏,共有9种情况,其中甲不输有6种可能,故概率为.故答案为:【点睛】本题考查随机事件的概率,是基础题.14【解析】由向量平行的坐标表示得出,求解即可得出答案.【详解】因为,所以,解得.故答案为:【点睛】本题主要考查了由向量共线或平行求参数,属于基础题.15【解析】先求出导数,再在定义域上考虑导数的符号为正时对应的的集合

12、,从而可得函数的单调增区间.【详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【点睛】本题考查导数在函数单调性中的应用,注意先考虑函数的定义域,再考虑导数在定义域上的符号,本题属于基础题.16【解析】满足条件执行,否则执行.【详解】本题实质是求分段函数在处的函数值,当时,.故答案为:1【点睛】本题考查条件语句的应用,此类题要做到读懂算法语句,本题是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析;(2)【解析】(1)补充完整的列联表如下:合格不合格合计高一新生121426非高一新生18624合计302050则的观测值, 所以有的把握

13、认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关(2)抽取的5名学生中竞赛成绩合格的有名学生,记为,竞赛成绩不合格的有名学生,记为,从这5名学生中随机抽取2名学生的基本事件有:,共10种, 这2名学生竞赛成绩都合格的基本事件有:,共3种, 所以这2名学生竞赛成绩都合格的概率为18(1);(2)详见解析;(3)详见解析.【解析】(1)根据,可求得,再根据是常数列代入根据通项与前项和的关系求解即可.(2)取,并结合通项与前项和的关系可求得再根据化简可得,代入化简即可知,再证明也成立即可.(3)由(2) 当时,代入所给的条件化简可得,进而证明可得,即数列是等比数列.继而求得,再根据作商法证明

14、即可.【详解】解:是各项不为零的常数列,则,则由,及得,当时,两式作差,可得当时,满足上式,则;证明:,当时,两式相减得:即即又,即当时,两式相减得:数列从第二项起是公差为的等差数列又当时,由得,当时,由,得故数列是公差为的等差数列;证明:由,当时,即,即,即,当时,即故从第二项起数列是等比数列,当时,另外,由已知条件可得,又,因而令,则故对任意的恒成立【点睛】本题主要考查了等差等比数列的综合运用,需要熟练运用通项与前项和的关系分析数列的递推公式继而求解通项公式或证明等差数列等.同时也考查了数列中的不等式证明等,需要根据题意分析数列为等比数列并求出通项,再利用作商法证明.属于难题.19(1);

15、(2)【解析】(1)根据递推公式,用配凑法构造等比数列,求其通项公式,进而求出的通项公式;(2)求出数列的通项公式,利用错位相减法求数列的前项和.【详解】解:(1),是首项为,公比为的等比数列所以,(2).【点睛】本题考查了由数列的递推公式求通项公式,错位相减法求数列的前n项和的问题,属于中档题.20(1)(2)【解析】(1)化简得到,分类解不等式得到答案.(2)的最大值,利用均值不等式计算得到答案.【详解】(1)因为,故或或解得或,故不等式的解集为.(2)画出函数图像,根据图像可知的最大值.因为,所以,当且仅当时,等号成立,故的最小值是3.【点睛】本题考查了解不等式,均值不等式求最值,意在考

16、查学生的计算能力和转化能力.21(1);(2).【解析】(1) 以分别为轴,轴,轴,建立空间直角坐标系, 设底面正方形边长为再求解与平面的法向量,继而求得直线与平面所成角的正弦值即可.(2)分别求解平面与平面的法向量,再求二面角的余弦值判断二面角大小即可.【详解】解:在正四棱锥中,底面正方形的对角线交于点所以平面取的中点的中点所以两两垂直,故以点为坐标原点,以分别为轴,轴,轴,建立空间直角坐标系设底面正方形边长为因为所以所以,所以,设平面的法向量是,因为,所以,取则,所以所以,所以直线与平面所成角的正弦值为设平面的法向量是,因为,所以,取则所以,由知平面的法向量是,所以所以,所以锐二面角的大小为【点睛】本题主要考查了建立平面直角坐标系求解线面夹角以及二面角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论