甘肃省兰州市2022年高三(最后冲刺)数学试卷含解析_第1页
甘肃省兰州市2022年高三(最后冲刺)数学试卷含解析_第2页
甘肃省兰州市2022年高三(最后冲刺)数学试卷含解析_第3页
甘肃省兰州市2022年高三(最后冲刺)数学试卷含解析_第4页
甘肃省兰州市2022年高三(最后冲刺)数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( )ABCD2已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是( )ABCD3中国古典乐器一般按“八

2、音”分类这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于周礼春官大师,分为“金、石、土、革、丝、木、匏(po)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( )ABCD4如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,则的最大值为( )ABC2D5设点,不共线,则“”是“”( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分又不必要条件6已知集合A,则集合( )ABCD7已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为(

3、 )ABCD8已知函数的导函数为,记,N. 若,则 ( )ABCD9已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,的概率为( )ABCD10如图是计算值的一个程序框图,其中判断框内应填入的条件是( )ABCD11设Py |yx21,xR,Qy |y2x,xR,则AP QBQ PCQDQ 12给出下列三个命题:“”的否定;在中,“”是“”的充要条件;将函数的图象向左平移个单位长度,得到函数的图象其中假命题的个数是( )A0B1C2D3二、填空题:本题共4小题,每小题5分,共20分。13三所学校举行高三联考

4、,三所学校参加联考的人数分别为160,240,400,为调查联考数学学科的成绩,现采用分层抽样的方法在这三所学校中抽取样本,若在学校抽取的数学成绩的份数为30,则抽取的样本容量为_.14将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是_15已知集合,若,则_16如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐

5、标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.18(12分)已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为(1)求椭圆的方程;(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.19(12分)网络看病就是国内或者国外的单个人、多个人或者单位通过国际互联网或者其他局域网对自我、他人或者某种生物的生理疾病或者机器故障进行查找询问、诊断治疗、检查修复的一种新兴的看病方式.因此,实地看病与网络看病便成为现在人们的两种看病方式,

6、最近某信息机构调研了患者对网络看病,实地看病的满意程度,在每种看病方式的患者中各随机抽取15名,将他们分成两组,每组15人,分别对网络看病,实地看病两种方式进行满意度测评,根据患者的评分(满分100分)绘制了如图所示的茎叶图:(1)根据茎叶图判断患者对于网络看病、实地看病那种方式的满意度更高?并说明理由;(2)若将大于等于80分视为“满意”,根据茎叶图填写下面的列联表:满意不满意总计网络看病实地看病总计并根据列联表判断能否有的把握认为患者看病满意度与看病方式有关?(3)从网络看病的评价“满意”的人中随机抽取2人,求这2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0

7、100.0050.0012.0722.7063.8415.0246.6357.87910.82820(12分)在中,、分别是角、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.21(12分)在四棱锥中,底面是边长为2的菱形,是的中点.(1)证明:平面;(2)设是直线上的动点,当点到平面距离最大时,求面与面所成二面角的正弦值.22(10分)已知圆:和抛物线:,为坐标原点(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标参考答案一、选择题:本题共12小题,每小题5分,共60分。在

8、每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得【详解】抛物线焦点为,令,解得,不妨设,则直线的方程为,由,解得,所以.故选:C【点睛】本小题主要考查抛物线的弦长的求法,属于基础题.2C【解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C考点:1向量加减法的几何意义;2正弦定理;3正弦函数性质3B【解析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有种取法;“两音

9、”中含有打击乐器的取法共有种取法;所求概率.故选:.【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.4C【解析】建立坐标系,写出相应的点坐标,得到的表达式,进而得到最大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为 可得到点的坐标为: 故得到 故得到 , 故最大值为:2.故答案为C.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结

10、合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.5C【解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.6A【解析】化简集合,,按交集定义,即可求解.【详解】集合,则.故选:A.【点睛】本题考查集合间的运算,属于基础题.7D【解析】分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比

11、,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.8D【解析】通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.9B【解析】首先求出基本事件总数,则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母,”, 记事件“恰好不同时包含字母,”为,利用对立事件的概率公式计算可得;【详解】解:从9个球中摸出3个球,则基本事件总数为(个),则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母

12、,”记事件“恰好不同时包含字母,”为,则.故选:B【点睛】本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题10B【解析】根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式【详解】因为该程序图是计算值的一个程序框圈所以共循环了5次所以输出S前循环体的n的值为12,k的值为6,即判断框内的不等式应为或 所以选C【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题11C【解析】解:因为P =y|y=-x2+1,xR=y|y1,Q =y| y=2x,xR =y|y0,因此选C12C【

13、解析】结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题,因为,所以“”是真命题,故其否定是假命题,即是假命题;对于命题,充分性:中,若,则,由余弦函数的单调性可知,即,即可得到,即充分性成立;必要性:中,若,结合余弦函数的单调性可知,即,可得到,即必要性成立.故命题正确;对于命题,将函数的图象向左平移个单位长度,可得到的图象,即命题是假命题故假命题有.故选:C【点睛】本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】某层抽

14、取的人数等于该层的总人数乘以抽样比.【详解】设抽取的样本容量为x,由已知,解得.故答案为:【点睛】本题考查随机抽样中的分层抽样,考查学生基本的运算能力,是一道容易题.14【解析】先求出基本事件总数6636,再由列举法求出“点数之和等于6”包含的基本事件的个数,由此能求出“点数之和等于6”的概率【详解】基本事件总数6636,点数之和是6包括共5种情况,则所求概率是故答案为【点睛】本题考查古典概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用151【解析】分别代入集合中的元素,求出值,再结合集合中元素的互异性进行取舍可解.【详解】依题意,分别令,由集合的互异性,解得,则.故答案为:【点睛

15、】本题考查集合元素的特性:确定性、互异性、无序性确定集合中元素,要注意检验集合中的元素是否满足互异性16【解析】设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算可得.【详解】解:设正四棱柱的底面边长,高,则,即故答案为:【点睛】本题考查柱体、锥体的体积计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)的极坐标方程为,普通方程为;(2)【解析】(1)根据三角函数恒等变换可得, ,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程;(2)法一:将代入曲线的极坐标方程得,运用韦达定理可得,根据,可

16、求得的范围;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,运用韦达定理可得,根据,可求得的范围;【详解】(1), ,即曲线的普通方程为,依题意得曲线的普通方程为,令,得曲线的极坐标方程为;(2)法一:将代入曲线的极坐标方程得,则,异号,;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,则,异号,.【点睛】本题考查参数方程与普通方程,极坐标方程与平面直角坐标方程之间的转化,求解几何量的取值范围,关键在于明确极坐标系中极径和极角的几何含义,直线的参数方程,参数的几何意义,属于中档题.18(1);(2)或【解析】(1)由椭圆的定义可知,焦点三角形

17、的周长为,从而求出.写出直线的方程,与椭圆方程联立,根据交点横坐标为,求出和,从而写出椭圆的方程;(2)设出P、Q两点坐标,由可知点为的重心,根据重心坐标公式可将点用P、Q两点坐标来表示.由点在圆O上,知点M的坐标满足圆O的方程,得式.为直线l与椭圆的两个交点,用韦达定理表示,将其代入方程,再利用求得的范围,最终求出实数的取值范围.【详解】解:(1)由题意知.,直线的方程为直线与椭圆的另一个交点的横坐标为解得或(舍去),椭圆的方程为(2)设.点为的重心,点在圆上,由得 ,代入方程,得,即由得解得.或【点睛】本题考查了椭圆的焦点三角形的周长,标准方程的求解,直线与椭圆的位置关系,其中重心坐标公式

18、、韦达定理的应用是关键.考查了学生的运算能力,属于较难的题.19(1)实地看病的满意度更高,理由见解析;(2)列联表见解析,有;(3).【解析】(1)对实地看病满意度更高,可以从茎叶图四个方面选一个回答即可;(2)先完成列联表,再由独立性检验得有的把握认为患者看病满意度与看病方式有关;(3)利用古典概型的概率公式求得这2人平分都低于90分的概率.【详解】(1)对实地看病满意度更高,理由如下:(i)由茎叶图可知:在网络看病中,有的患者满意度评分低于80分;在实地看病中,有的患者评分高于80分,因此患者对实地看病满意度更高.(ii)由茎叶图可知:网络看病满意度评分的中位数为73分,实地看病评分的中

19、位数为87分,因此患者对实地看病满意度更高.(iii)由茎叶图可知:网络看病的满意度评分平均分低于80分;实地看病的满意度的评分平均分高于80分,因此患者对实地看病满意度更高.(iV)由茎叶图可知:网络看病的满意度评分在茎6上的最多,关于茎7大致呈对称分布;实地看病的评分分布在茎8,上的最多,关于茎8大致呈对称分布,又两种看病方式打分的分布区间相同,故可以认为实地看病评分比网络看病打分更高,因此实地看病的满意度更高.以上给出了4种理由,考生答出其中任意一一种或其他合理理由均可得分.(2)参加网络看病满意度调查的15名患者中共有5名对网络看病满意,10名对网络看病不满意;参加实地看病满意度调查的

20、15名患者中共有10名对实地看病满意,5名对实地看病不满意.故完成列联表如下:满意不满意总计网络看病51015实地看病10515总计151530于是,所以有的把握认为患者看病满意度与看病方式有关.(3)网络看病的评价的分数依次为82,85,85,88,92,由小到大分别记为,从网络看病的评价“满意”的人中随机抽取2人,所有可能情况有:;共10种,其中,这2人评分都低于90分的情况有:;共6种,故由古典概型公式得这2人评分都低于90分的概率.【点睛】本题主要考查茎叶图的应用和独立性检验,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平.20 (1) .(2) .【解析】(1)根据题

21、意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等变换的公式,化简得到,再根据为锐角三角形,求得,利用三角函数的图象与性质,即可求解.【详解】(1)由题意知,由余弦定理可知,又,.(2)由正弦定理可知,即,又为锐角三角形,即,则,所以,综上的取值范围为.【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.21(1)证明见解析(2)【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论