第八章季节性时间序列模型ppt课件_第1页
第八章季节性时间序列模型ppt课件_第2页
第八章季节性时间序列模型ppt课件_第3页
第八章季节性时间序列模型ppt课件_第4页
第八章季节性时间序列模型ppt课件_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第八章 季节性时间序列模型第一节 季节指数第二节 综合分析第三节 X11过程第四节 随机季节差分【例】以北京市1995年2000年月平均气温序列为例,引见季节性时间序列模型的根本思想和详细操作步骤。 时序图一、季节指数季节指数的概念所谓季节指数就是用简单平均法计算的周期内各时期季节性影响的相对数 季节模型前往本节首页下一页上一页季节指数的计算计算周期内各期平均数计算总平均数计算季节指数季节指数的了解季节指数反映了该季度与总平均值之间的一种比较稳定的关系假设这个比值大于1,就阐明该季度的值经常会高于总平均值假设这个比值小于1,就阐明该季度的值经常低于总平均值假设序列的季节指数都近似等于1,那就阐

2、明该序列没有明显的季节效应 例1 季节指数的计算季节指数图二、综合分析常用综合分析模型加法模型乘法模型混合模型前往本节首页下一页上一页例2 对1993年2000年中国社会消费品零售总额序列进展确定性时序分析 月份199319941995199619971998199920001977.51192.21602.21909.12288.52549.52662.12774.72892.51162.71491.51911.22213.52306.42538.428053942.31167.51533.31860.12130.92279.72403.126274941.31170.41548.71854

3、.82100.52252.72356.825725962.21213.71585.41898.32108.22265.22364263761005.71281.11639.719662164.723262428.826457963.81251.51623.61888.72102.52286.12380.325978959.812861637.11916.42104.42314.62410.9263691023.31396.217562083.52239.62443.12604.32854101051.11444.118182148.3234825362743.930291111021553.8

4、1935.22290.12454.92652.22781.53108121415.51932.22389.52848.62881.73131.43405.73680(1)绘制时序图(2)选择拟合模型长期递增趋势和以年为固定周期的季节动摇同时作用于该序列,因此尝试运用混合模型b拟合该序列的开展(3)计算季节指数月份季节指数月份季节指数10.98270.92920.94380.94030.92091.00140.911101.05450.925111.10060.951121.335季节指数图季节调整后的序列图(4)拟合长期趋势(5)残差检验(6)短期预测三、X-11过程简介X-11过程是美国国情

5、调查局编制的时间序列季节调整过程。它的根本原理就是时间序列确实定性要素分解方法 要素分解长期趋势起伏季节动摇不规那么动摇买卖日影响模型加法模型乘法模型前往本节首页下一页上一页方法特征普遍采用挪动平均的方法用多次短期中心挪动平均消除随机动摇用周期挪动平均消除趋势用买卖周期挪动平均消除买卖日影响 例2 续对1993年2000年中国社会消费品零售总额序列运用X-11过程进展季节调整 选择模型无买卖日影响X11过程获得的季节指数图 季节调整后的序列图趋势拟合图 随机动摇序列图第四节 季节时间序列模型4.1季节时间序列的重要特征一、季节时间序列表示许多商业和经济时间序列都包含季节景象,例如,冰淇淋的销量

6、的季度序列在夏季最高,序列在每年都会反复这一景象。相应的周期为4。类似地,在美国汽车的月度销售量和销售额数据在每年的7月和8月也趋于下降,由于每年这时汽车厂家将会推出新的产品;在西方,玩具的销售量在每年12月份会添加,主要是由于圣诞节的缘故;在中国,每年农历5月份糯米的销售量大大地添加,这是由于中国的端午节有吃粽子的习惯。以上三种情况的季节周期都是12个月。由上面的例子可以看到,很多的实践问题中,时间序列会显示出周期变化的规律,这种周期性是由于季节变化或其他物理要素所致,我们称这类序列为季节性序列。单变量的时间序列为了分析方便,可以编制成一个二维的表格,其中一维表示周期,另一维表示某个周期的一

7、个观测值,如表8.1所示。 表4.1 单变量时间序列观测数据表例如,19932000年各月中国社会消费品零售总额序列,是一个月度资料,其周期S=12,起点为1993年1月,详细数据见附录。二、季节时间序列的重要特征季节性时间序列的重要特征表现为周期性。在一个序列中,假设经过S个时间间隔后观测点呈现出类似性,比好像处于波峰或波谷,我们就说该序列具有以S为周期的周期特性。具有周期特性的序列称为季节时间序列,S为周期的长度,不同的季节时间序列会表现出不同的周期,季度资料的一个周期表现为一年的四个季度,月度资料的周期表现为一年的12各月,周资料表现为一周的7天或5天。例如,图4.16的数据是1993年

8、1月到2000年12月的中国社会消费品月销售总额。 图4.16 1993年1月2000年12月的中国社会消费品月销售总额当然影响一个季节性时间序列的要素除了季节要素外,还存在趋势变动和不规那么变动等。我们研讨季节性时间序列的目的就是分解影响经济目的变量的季节要素、趋势要素和不规那么要素,据以了解它们对经济的影响。4.2 季节时间序列模型一、随机季节模型季节性随机时间序列时间间隔为周期长度S的两个时间点上的随机变量有相对较强的相关性,或者说季节性时间序列表现出周期相关,比如对于月度数据,S=12, 与 有相关关系,于是我们可以利用这种周期相关性在 与 之间进展拟合。设一个季节性时间序列 经过D阶

9、的季节差分 后为一平稳时间序列 ,即 ,那么一阶自回归季节模型为 或 (8.5)其中, 为白噪声序列。将 代入式8.5,得 (8.6)同样的思绪,一个一阶挪动平均季节模型为 或 (8.7)推行之,季节性的SARIMA为 (8.8)其中,二、乘积季节模型式(8.8)的季节性SARIMA模型中,我们假定是 白噪声序列,值得留意的是实践中 不一定是白噪声序列。由于式(8.8)的模型中季节差分仅仅消除了时间序列的季节成分,自回归或挪动平均仅仅消除了不同周期一样周期点之间具有的相关部分,时间序列还能够存在长期趋势,一样周期的不同周期点之间也有一定的相关性,所以,模型能够有一定的拟合缺乏,假设假设 是AR

10、IMAp,d,q模型,那么式(8.8)可以改为 (8.9)其中,称式(8.9)为乘积季节模型,记为 。假设将模型的AR因子和MA因子分别展开,可以得到类似的 模型,不同的是模型的系数在某些阶为零,故 是疏系数模型或子集模型。三、常见的随机季节模型为了读者学习起来方便,这里列举几个常见的随机季节模型,并简介其生成的过程。在实践问题中,季节性时间序列所含有的成分不同,记忆性长度各异,因此模型方式也是多种多样的。这里以季节周期S=12为例,引见几种常见的季节模型。模型一 (8.10)模型(8.10)先对时间序列 做双重差分,挪动平均算子由 和 两个因子构成,该模型是交叉乘积模型 。实践上该模型是由两

11、个模型组合而成。由于序列存在季节趋势,故先对序列进展季节差分 ,差分后的序列是一阶季节挪动平均模型,那么 (8.11)但式(8.11)仅仅拟合了间隔时间为周期长度点之间的相关关系,序列还存在非季节趋势,相邻时间点上的变量还存在相关关系,所以模型显然拟合缺乏, 不仅是非白噪声序列而且非平稳, 如满足以下的模型 (8.12)式(8.12)拟合了序列滞后期为一期的时间点之间的相关, 为白噪声序列,将式(8.12)代入式(8.11),那么得到模型一。模型二 (8.13)模型(8.13)也是由两个模型组合而成,一个是 (8.14)它描写了不同年份同月的资料之间的相关关系,但是又有欠拟合存在,由于 不是白

12、噪声序列。假设 满足以下MA1的模型,那么 (8.15)将式(8.15)代入式(8.14),得到模型二。 4.3 季节性检验和季节模型的建立检验一个时间序列能否具有季节性是非常必要的,假设一个时间序列季节性显著,那么拟适宜应的季节时间序列模型是合理的,否那么会有欠拟合之嫌。假设不是一个具有显著季节性的时间序列,即使是一个月度数据资料,也不应该拟合季节性时间序列模型。下面我们讨论如何识别一个时间序列的季节性。一、季节性时间序列自相关函数和偏自相关函数的检验根据Box-Jenkins的建模方法,自相关函数和偏自相关函数的特征是识别非季节性时间序列的工具。从第七章第二节的讨论曾经看到季节性时间序列模

13、型实践上是一种特殊的ARIMA模型,不同的是它的系数是稀疏的,即部分系数为零,所以对于乘积季节模型的阶数识别,根本上可以采用Box-Jenkins的方法,调查序列样本自相关函数和偏自相关函数,从而对季节性进展检验。1. 季节性MA模型的自相关函数假设某一季节性时间序列顺应的模型为 (8.16) (8.17) 是白噪声序列。将式(8.17)代入(8.16),可得整理后,有这实践上是一个疏系数的MA(S+1)模型,除滞后期为1,S和S+1时的滑动平均参数不为零以外,其他的均为零。根据前面第三章的讨论,不难求出其自相关函数。可见当得到样本的自相关函数后,各滑动平均参数的矩法估计式也就不难得到了。更普

14、通的情形,假设一个时间序列服从模型 (8.18)其中, 。整理后可以看出该时间序列模型是疏系数MA(ms+q),可以求出其自相关函数,从而了解时间序列的统计特征。2. 季节性AR模型的偏自相关函数假定 是一个季节时间序列,服从假设我们将上式展开整理后,可以得到这是一个阶段为S+1的疏系数AR模型,根据偏自相关函数的定义,该模型的滞后期1,S和S+1不为零,其他的偏自相关函数能够会显著为零。更普通的情形,假设一个时间序列服从模型 (8.19)其中, ,整理后可以看到该时间序列模型是疏系数AR(kS+p)模型,求出其偏自相关函数,可以了解时间序列的统计特征。 季节时间序列的样本自相关函数和偏自相关

15、函数既不拖尾也不截尾,也不呈现出线性衰减趋势,假设在滞后期为周期S的整倍数时出现峰值,那么建立乘积季节模型是顺应的,同时SAR算子 和SMA算子 的阶数也可以经过自相关函数和偏自相关函数的表现得到。关于差分阶数和季节差分阶数的选择是试探性的,可以经过调查样本的自相关函数来确定。普通情况下,假设自相关函数缓慢下降同时在滞后期为周期S的整倍数时出现峰值,通常阐明序列同时有趋势变动和季节变动,应该做一阶差分和季节差分。假设差分后的序列所呈现的自相关函数有较好的截尾和拖尾性,那么差分阶数是适宜的。 例4.3 绘制1993年1月至2000年12月中国社会消费品零售总额序列的自相关和偏自相关图图4.17。

16、 图4.17图4.17显示中国社会消费品零售总额月度时间序列的自相关函数缓慢下降,且在滞后期为周期倍数时出现峰值,滞后期为12的自相关函数为0.645,滞后期为24的自相关函数为0.318,阐明该时间序列是一个典型的既有趋势又有季节变动的序列,由于该序列不是一个平稳的时间序列,所以我们不能由其偏自相关函数简单建立一个自回归模型,该序列建模必需将序列进展差分变化,使其平稳化。EVIEWS软件引见()一、X-12季节调整方法简介X-12-ARIMA方法最早由美国普查局Findley等人在20世纪90年代左右提出,现已成为对重要时间序列进展深化处置和分析的工具,也是处置最常用经济类目的的工具,在美国

17、和加拿大被广泛运用。其在欧洲统计界也得到引荐,并在包括欧洲中央银行在内的欧洲内外的许多中央银行、统计部门和其他经济机构被广泛运用。X-12-ARIMA方法提供了四个方面的改良和提高,1可选择季节、买卖日及假日进展调整,包括调整用户定义的回归自变量估计结果,选择辅助季节和趋势过滤器,以及选择季节、趋势和不规那么要素的分解方式;2对各种选项条件下调整的质量和稳定性做出新诊断;3 对具有ARIMA误差及可选择稳健估计系数的线性回归模型,进展广泛的时间序列建模和模型选择才干分析;4提供一个新的易于分批处置大量时间序列才干的用户界面。 X-12-ARIMA方法现已广泛运用于世界各国的中央银行、统计部门和

18、其他经济机构,并且已成为对重要时间序列进展深化处置和分析的工具。二、案例:1993-2000年中国社会消费品零售总额月度序列单位:亿元经过1993-2000年中国社会消费品零售总额月度序列的时序图图8.16,我们可以察看到该序列有着很强的季节特征。经过该序列的自相关函数图图8.17及单位根检验结果图8.19的进一步判别,以为该序列非平稳,并且有着很强的季节特征。图8.19首先显示的是Seasonal Adjustment季节调整模块图8.19,该模块共有5个选项区。在X11 MethodX11方法选项区选Multiplicative乘法模型。在Seasonal Filter季节滤子选项区选Auto自动。在Trend Filter趋势滤子选项区选Auto自动。在Component Series to Save保管分量选项区选季节调整序列_

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论