




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 10 章压 杆 稳 定Stability of columns一。稳定性概念 细长杆件承受轴向压缩载荷作用时,会表现出与强度失效性质全然不同的失效现象,即将会由于平衡的不稳定性而发生失效,这种失效称为稳定性失效,简称失稳,又称为屈曲失效。 内燃机配气机构中的挺杆 磨床液压装置的活塞杆 细长压杆随受力的改变,平衡的稳定性会发生改变,由稳定平衡转为不稳定平衡的临界值称为压杆的临界压力或临界力;它是压杆保持稳定的直线平衡的最大值,或是压杆保持微曲平衡的最小值。解决压杆稳定问题的关键是确定其临界压力。二。临界压力的欧拉公式1 两端铰支压杆的临界压力xlvPxyPxvPMP压杆距支座x处截面上的弯矩
2、是代入挠曲线的近似微分方程令:则有:以上微分方程的通解是 式中A、B常数,可由边界条件来确定。根据简支梁的边界条件:x=0和x=l时, v=0 则由此求得故得:取n=1,得到具有实际意义的、最小的临界压力为 欧拉公式2 其他约束条件下的压杆的临界压力Pll一端固定一端自由的细长压杆,它相当于两端铰支长为2l的压杆的挠曲线的一半部分;因此,其临界压力公式为P0.5l二端固定的细长压杆,其中间部分(0.5l) 相当于两端铰支长为0.5l的压杆;因此,其临界压力公式为P0.7l一端固定一端铰支的细长压杆,其中的一部分(0.7l) 相当于两端铰支长为0.7l的压杆;临界压力公式是:细长压杆临界压力的公
3、式写成统一式为: 欧拉公式的普遍形式 称为长度系数,(l)称为相当长度 3 临界应力、柔度、欧拉公式的适用范围 cr称为临界应力 柔度或长细比 欧拉公式的临界压力的推导是由挠曲线的近似微分方程得出,则杆内的应力不能超过材料的比例极限,即为只有当压杆的柔度大于或等于极限值时,欧拉公式才可使用。 以1代表这一极值,即 欧拉公式的适用范围 1与材料的性能有关,材料不同, 1的数值也就不同。满足1条件的杆件称为细长杆或大柔度杆。Flbhzy例10-1。钢质细长杆,两端铰支,长l=1.5m,横截面是矩形截面,h=50 mm,b=30 mm,材料是A3钢,弹性模量E=200GPa;求临界力和临界应力。bh
4、yz解:(a) 判断发生弯曲的方向。由于杆截面是矩形,杆在不同方向弯曲的难易程度不同,如图:因为所以在各个方向上发生弯曲时约束条件相同的情况下,压杆最易在xz平面内发生弯曲(b) 判断欧拉公式的适用范围。因为是细长杆所以可用欧拉公式(c) 计算临界压力。由欧拉公式(d) 计算临界应力。例10-2 木柱长l=7 m,横截面是矩形,h=200 mm,b=120 mm;当它在xz平面(最小刚度平面)内弯曲时,两端视为固定;当它在xy平面(最大刚度平面)内弯曲时,两端视为铰支;木材的弹性模量E=10Gpa,1=59;求临界力和临界应力。bhyzyxz解:(a) 求在xz平面内弯曲时的柔度。(b) 求在
5、xy平面内弯曲时的柔度。(c) 判断杆件易在哪个平面内弯曲。所以易在xy平面内弯曲。(d) 判断欧拉公式的适用范围。所以为大柔度杆,可用欧拉公式。(e) 求临界力和临界应力。三。中、小柔度杆的临界应力1) 中柔度杆临界应力的经验公式其中,a,b是由杆件材料决定的常数 经验公式: 中长杆或中柔度杆 2)小柔度杆的临界应力小柔度杆或短杆: 2 此时压杆属强度问题,临界应力就是屈服极限或强度极限,即或 3) 临界应力总图O12pscr=scr=a-bcr=2E/2可以明显地看出,短杆的临界应力与柔度无关,而中、长杆的临界应力则随柔度的增加而减小。例10-3 两端铰支的压杆,长l=1.5 m,横截面直
6、径d=50 mm,材料是Q235钢,弹性模量E=200 GPa,y=190 MPa;求压杆的临界力;如果:(1) l1=0.75l;(2) l2=0.5l,材料选用优质碳钢;压杆的临界力变为多大?解:(a) 计算压杆的柔度。(b) 判别压杆的性质。压杆是大柔度杆,用欧拉公式计算临界力。(c) 计算临界应力。(d) 当l1=0.75l时,计算压杆的柔度,判别压杆的性质。压杆是中柔度杆,选用经验公式计算临界力(e) 当l2=0.5l时,计算压杆的柔度,判别压杆的性质。压杆是小柔度杆,临界应力就是屈服应力四。压杆的稳定计算与合理设计 1 稳定性条件压杆的实际工作压力不能超过许用压力,则稳定条件为 n
7、st为压杆的稳定安全系数 定义工件安全系数为稳定条件又可表示为2 压杆的合理设计 压杆稳定设计计算的包括稳定性校核、压杆截面的设计和压杆的许可载荷设计。在机械设计中,往往是根据构件的工作需要或其他方面的要求初步确定构件的截面,然后再校核其稳定性。 GFCAB1m1m450例10-4图示钢结构,承受载荷F作用,试校核斜撑杆的稳定性。已知载荷F12kN,其外径D45mm,内径d=36 mm,稳定安全系数nst=2.5。斜撑杆材料是Q235钢,弹性模量E=210 GPa, p=200 MPa, s=235 MPa,450FCABFAXFAYFGB解:(a) 受力分析。以梁AC为研究对象,由静力平衡方
8、程可求得(b) 计算压杆的柔度。(c) 判别压杆的性质。由已知求得查表得a304MPa,b1.12 MPa。求得压杆是中柔度杆,选用经验公式计算临界力。(e) 稳定性校核。(d) 计算临界应力。满足稳定要求 3 提高压杆稳定性的措施1.减小压杆的支承长度;因为临界应力与杆长平方成反比,因此可以显著地提高压杆承载能力。2. 改变压杆两端的约束;使长度系数减小,相应地减小柔度,从而增大临界应力。3. 选择合理的截面形状;可以在不增加截面面积的情况下,增加横截面的惯性矩I,从而减小压杆柔度,起到提高压杆稳定性的作用。图10.10是起重臂合理截面。4.压杆在各纵向平面内相当长度相同时,要使得在两个主惯性平面内的柔度接近相等。从而有接近相等的稳定性。 5. 合理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论