版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、决策分析Decision Analysis课程要求:1、听课不用记笔记。不点名。2、作业全部做成电子文档,用Email递交,作业记成果,占课程成果的30。3、考试闭卷。卷面成果占课程成果的70 。教师信息:管理学院 蒋绍忠电子邮件:办公室:玉泉校区行政楼319办公:87952181第二部分多目的决策根本概念层次分析法目的规划第一部分不确定型和风险型决策不确定型决策风险型决策目 录不确定型和风险型决策决策的定义:在一定的环境中,决策者在假设干可以采取的方案中决议其中的一种并加以实施,使实施的结果对预定的目的最好。决策的要素:决策者:单一决策者 多个决策者群决策
2、决策环境:确定性环境 不确定性环境 风险环境 决策目的:单目的 多目的决策Decision和对策Game“决策是具有能动性的一方决策者和变化的,但没有能动性的另一方决策环境之间的“竞赛。决策环境是变化的,但这些变化和决策者的决策无关。“对策是具有能动性的一方和同样具有能动性的另一方之间的“竞赛。两方都会根据对方的决策,调整本人的行为,使结果对本人有利或使对方不利。研讨对策的科学称为对策论或博弈论Game Theory。我国古代的“田忌赛马就是一个对策的例子。对策最简单的例子是所谓“二人零和对策。乙方A2B2C2甲方A16-416B1-3323C115-15D1-2434-3-4-1极大极大/极
3、小极小准那么:双方都以本人获利最大为准那么。甲:Maxmax(6,-4,1),max(-3,3,2),max(1,5,-1),max(-2,4,3)=Max6,3,1,4=6乙:Minmin(6,-3,1,-2),min(-4,3,5,4),min(1,2,-1,3)=Min-3,-4,-1=-4A1B2C1 C2 D1 A2 A1不存在稳态解。乙方A2B2C2甲方A16-41-4B1-332-3C115-1-1D1-243-2653极小极大准那么:双方都以本人能够遭遇的各种最坏情况下争取最好结果为准那么。甲:Maxmin(6,-4,1),min(-3,3,2),min(1,5,-1),min
4、(-2,4,3)=Max-4,-3,-1,-2=-1乙:Minmax(6,-3,1,-2),max(-4,3,5,4),max(1,2,-1,3)=Min6,5,3=3稳态解为C1-C2。确定环境下的决策运筹学中线性规划、非线性规划和动态规划都是确定环境下的决策方法不确定环境下的决策 决策者面临的决策环境由一些自然形状组成,决策者可以采取假设干决策方案,每一种决策方案在不同的自然形状下出现的结果是知的,但决策者不能预先估计各种自然形状出现的概率。不确定决策的几种准那么:悲观准那么乐观准那么等能够性准那么乐观系数准那么懊悔值准那么悲观准那么:最坏的情况下争取最好的结果例1. 某工厂决议投产一种新
5、产品。投产以后销售情况有好、中等、差三种能够,但厂家目前无法估计这三种情况出现的概率。产品的消费批量有大中小三种选择。不同的消费批量在不同的市场销售情况下企业的收益如下表:收益(万元)需求大N1需求中N2需求小N3MinMax(min)大批量(S1)500300-250-250100中批量(S2)3002008080小批量(S3)200150100100*按照这个准那么,最优决策是小批量消费收益(万元)需求大N1需求中N2需求小N3MaxMax(max)大批量(S1)500300250500*500中批量(S2)30020080300小批量(S3)200150100200乐观准那么:最好的情况
6、下争取最好的结果按照这个准那么,最优决策是大批量消费讨论:他以为悲观和乐观的决策准那么在实践决策问题可行吗?有那些缺乏? 悲观准那么和乐观准那么都假定,决策环境是不确定的,而不确定的决策环境中能够出现的各种形状的能够性是不可知的或不可度量的。假设这些形状出现的能够性是可以度量的,决策问题就转变成为风险型决策。收益(万元)需求大N1需求中N2需求小N3期望值最大期望值概 率(pi)1/31/31/3大批量(S1)500300250183.33193.33中批量(S2)30020080193.33*小批量(S3)200150100150.00等能够性准那么:假设等能够性条件下,期望值最大按照这个准
7、那么,最优决策是中批量消费乐观系数准那么:乐观系数 01 收益(万元)需求大N1需求中N2需求小N3CVi大批量(S1)500300250275*中批量(S2)30020080234小批量(S3)200150100170对于0.71 0.3最优决策为大批量消费CV10.7max(500,300,-250)+0.3min(500,300,-250)=350-75=275CV2=0.7max(300,200,80)+0.3min(300,200,80)=210+24=234CV3=0.7max(200,150,100)+0.3(200,150,100)=140+30=170对于0.51 0.5收益
8、(万元)需求大N1需求中N2需求小N3CVi大批量(S1)500300250125中批量(S2)30020080190*小批量(S3)200150100150最优决策为中批量消费CV10.5max(500,300,-250)+0.5min(500,300,-250)=250-125=125CV2=0.5max(300,200,80)+0.5min(300,200,80)=150+40=190CV3=0.5max(200,150,100)+0.5(200,150,100)=100+50=150对于0.31 0.7收益(万元)需求大N1需求中N2需求小N3CVi大批量(S1)50030025025
9、中批量(S2)30020080146*小批量(S3)200150100130最优决策为中批量消费CV10.3max(500,300,-250)+0.7min(500,300,-250)=150-175=-25CV2=0.3max(300,200,80)+0.7min(300,200,80)=90+56=146CV3=0.3max(200,150,100)+0.7(200,150,100)=60+70=130懊悔值准那么:以最大懊悔值中的最小的为最优决策收益(万元)需求大N1需求中N2需求小N3大批量(S1)500300250中批量(S2)30020080小批量(S3)200150100Max(
10、Si,Nj)500300100收益(万元)需求大N1需求中N2需求小N3Max(Si,Nj)大批量(S1)00350350中批量(S2)20010020200*小批量(S3)3001500300懊悔值矩阵风险型决策最大能够决策收益(万元)需求大N1需求中N2需求小N3概 率(pi)大批量(S1)500300250中批量(S2)30020080小批量(S3)200150100*100最大能够为需求小,按最大能够思索,应采用小批量消费。最大能够决策用于一种形状的能够性明显大于其它形状时,假设几种形状发生的概率相差不大,那么不适用。决策者能预先估计决策环境中各种自然形状出现的概率。
11、期望值决策收益(万元)需求大N1需求中N2需求小N3期望值概 率(pi)大批量(S1)50030025065中批量(S2)30020080126*小批量(S3)200150100120选择期望值最大的决策为最优决策中批量的决策为最优决策。决策树确定批量S1S3S2大批量中批量小批量N1(需求量大) P(N1)=0.1 N2(需求量中) P(N1)=0.2 N3(需求量小) P(N1)=0.7 N1(需求量大) P(N1)=0.1 N2(需求量中) P(N1)=0.2 N3(需求量小) P(N1)=0.7 N1(需求量大) P(N1)=0.1 N2(需求量中) P(N1)=0.
12、2 N3(需求量小) P(N1)=0.7 500300-25030020080200150100决策节点概率节点收益-65126120126多层决策树确定批量S1S3S2大批量中批量小批量N1 P(N1)=0.1 N2 P(N1)=0.2 N3 P(N1)=0.7N1 P(N1)=0.1 N2 P(N1)=0.2 N3 P(N1)=0.7 N1 P(N1)=0.1 N2 P(N1)=0.2 N3 P(N1)=0.7 50030030020080200150100129.6126120技术改造S4S5部分改造彻底改造胜利 P=0.8失败 P=0.2胜利 P=0.6失败 P=0.4500-6001
13、000-900280240280129.6完备信息的价值假设有一个市场预测专家,他不能改动这种产品的市场销售情况的概率分布,但他能完全准确地预测这种产品的市场销售情况。这样的信息称为完备信息。这样的信息的期望收益称为完备信息的期望收益。完备信息的期望收益显然要高于不具有完备信息的期望收益。两者之差称为完备信息的价值。确定批量S1S3S2大批量中批量小批量N1(需求量大) P(N1)=0.1 N2(需求量中) P(N1)=0.2 N3(需求量小) P(N1)=0.7 N1(需求量大) P(N1)=0.1 N2(需求量中) P(N1)=0.2 N3(需求量小) P(N1)=0.7 N1(需求量大)
14、 P(N1)=0.1 N2(需求量中) P(N1)=0.2 N3(需求量小) P(N1)=0.7 500300-25030020080200150100-65126120126500300100完备信息的期望值为:0.15000.23000.7100180万元完备信息的价值为:18012654万元S1确定批量确定批量确定批量需求量大0.1需求量中0.2需求量小0.7大批量中批量小批量大批量中批量小批量大批量中批量小批量500300200300200150-25080100100300500180风险决策的成效实际以上的风险决策方法是建立在以方案的期望值大小作为决策准那么的根底上的。但在实践生活
15、中,经常发生实践的决策行为并不服从期望值准那么的情况。例如,对于以下几种情况,要求决策这选择其中对本人最有利的一种:抛一枚硬币,正面朝上得1000元,反面朝上反而要付出600元A抛一枚硬币,正面朝上得600元,反面朝上反而要付出200元B直接获取200元C这三个方案的收益期望值都是200,但决策者对它们的偏好显然是不同的。我们用“成效Utility来表示带有风险的收益对决策者的价值。成效函数确实定由于不同的决策者对风险的态度不同,同样的决策方案,对不同的决策者成效值是不同的。在各种方案中,收益的最大值的成效为1,收益的最小值损失的最大值的成效为0。例如在上例中,u(1000)=1,u(-600
16、)0。假设断策者以为C方案必A方案好,阐明u(200)0.5u(1000)+0.5u(-600)=0.5假设将C方案中的200元降为100元,仍有u(100)0.5u(1000)+0.5u(-600)=0.5.u(0)0.5u(1000)+0.5u(-600)=0.5.u(-100)0.5u(1000)+0.5u(-600)=0.5.u(-50)u(B)u(A) u(C)=u(200)=0.75决策者2:u(A)=0.5u(1000)+0.5u(-600)=0.5 u(B)=0.5u(600)+0.5u(-200)=0.2 u(A)u(B)u(C) u(C)=u(200)=0.15 决策者1:
17、u(1000)=1,u(600)=0.85,u(200)=0.75,u(-200)=0.4,u(-600)=0决策者2: u(1000)=1,u(600)=0.3,u(200)=0.15,u(-200)=0.1,u(-600)=0运用期望成效准那么的决策树方法确定批量S1S3S2大批量中批量小批量N1(需求量大) P(N1)=0.1 N2(需求量中) P(N1)=0.2 N3(需求量小) P(N1)=0.7 N1(需求量大) P(N1)=0.1 N2(需求量中) P(N1)=0.2 N3(需求量小) P(N1)=0.7 N1(需求量大) P(N1)=0.1 N2(需求量中) P(N1)=0.2
18、 N3(需求量小) P(N1)=0.7 500300-25030020080200150100-651261201265004003002001000-100-200-2501决策者1决策者2收益50030020015010080250效用11.00.80.780.750.720.70.0效用21.050.320.30.0确定批量S1S3S2大批量中批量小批量N1(需求量大) P(N1)=0.1 N2(需求量中) P(N1)=0.2 N3(需求量小) P(N1)=0.7 N1(需求量大) P(N1)=0.1 N2(需求量中) P(N1)=0.2 N3(需求量小) P(N1)=
19、0.7 N1(需求量大) P(N1)=0.1 N2(需求量中) P(N1)=0.2 N3(需求量小) P(N1)=0.7 500300-25030020080200150100-65 0.26 0.20126 0.72 0.34120 0.73 0.331261.00.800.80.780.70.780.750.721.00.500.40.350.32期望值 决策者1的成效期望 决策者2的成效期望收益成效1成效2假设洪水强度在水坝设计规范以内,不会呵斥任何损失,而且只需在设计规范以内,洪水越大,蓄水、发电等效益越显著。假设洪水强度超越设计规范,不仅将危及大坝平安,还会对下游人
20、民生命财富呵斥宏大损失,高程越高,损失越大。不同高程的水坝,遇到不同强度的洪水,效益和损失千万元如下表所示:在一条河流上方案建造一座水电站,水坝的高程有50米,80米和100米三种方案。三种高程的水坝分别可以抵御20年一遇即发生概率为0.05、50年一遇即发生概率为0.02和100年一遇发生概率为0.01的洪水。 水坝高程洪水强度发生概率50米80米100米小于20年一遇0.90587620年一遇0.0520151050年一遇0.026200180100年一遇0.011530500大于100年一遇0.01520100200损益期望值7.679.28511.53以损益期望值为评价目的,100米高
21、层为最优决策益损值-200-100-30-20-15-667效用0.010.720.730.740.75益损值8101520180200500效用0.760.770.780.80.930.951.0-200 -100 0 100 200 300 400 5001.00.20.0益损值-200-100-30-20-15-667效用0.000.500.700.710.720.730.740.75益损值8101520180200500效用0.760.770.780.800.930.951.00 水坝高程洪水强度发生概率50米80米100米小于20年一遇0.9050
22、.760.750.7420年一遇0.050.800.780.7750年一遇0.020.730.950.93100年一遇0.010.720.701.00大于100年一遇0.0150.710.500.00损益期望值0.7600.7510.737以成效期望值为评价目的,50米高层为最优决策有一个风险投资的时机,胜利和失败的概率都是0.5。投资1元,假设胜利可以得到1.6元的利润,即资本成为2.6元。假设失败,那么损失1元,即资本成为0。开场的资本为100万元。投资的次数和每次投资额不限。为了不至于把钱输光,投资者采取如下的战略:每次总是将资本的一半去投资。问题:这项投资的结局如何,是一本万利,还是一
23、贫如洗?问题1:风险决策的一个讨论题答案1:设初始资本为a元,资本增值率K=1.6第一次投资a/2元假设胜利,资本为a1=a+Ka/2=(1+K/2)a假设失败,资本为a1=0.5a第一次投资后的期望资本为:E1=0.5(1+K/2)a+0.50.5a=(0.75+0.25K)a第二次投资(0.75+0.25K)a/2假设胜利,资本为a2= (0.75+0.25K)a +K (0.75+0.25K)a/2 = (0.75+0.25K)a(1+K/2)假设失败,资本为 a2= (0.75+0.25K)a/2第二次投资后的期望资本为 E2= 0.5(0.75+0.25K)a(1+K/2)0.5 (
24、0.75+0.25K)a/2 (0.75+0.25K)(0.75+0.25K)a= (0.75+0.25K)2 a依次类推,第n次投资以后的期望资本为En= (0.75+0.25K)n a用K=1.6,代入 En= (1.15)n a即随着投资次数的添加,期望资本会无限增大。是一项一本万利的生意。答案2:设投资2n次,其中胜利和失败各占n次第一次投资胜利资本成为a1=a+1.6a/2=1.8a第二次投资又胜利,资本a2=1.8a+1.61.8a/2=1.82a.第n次胜利,资本成为an=(1.8)na第1次失败,资本成为 an1=0.5(1.8)na第n次失败,资本成为 a2n=(0.5)n(
25、1.8)na=(0.9)na 随着投资次数的添加,资本将减少到0。投资的结果将血本无归。讨论题:当投资次数无限增大时,投资者的资本终究是“一本万利还是“血本无归?错的答案错在哪里?例一 风险投资的计算机模拟实验1、建立一张Excel表,模拟投资次数设定为100次。当前资本为100万元。第二次投资前的资本B5等于第一次投资后的资本E4,依次定义每次投资前的资本为上一次投资后的资本。2、对每一次模拟投资,设置一个在0,1区间均匀分布的随机变量。按功能键F9,一切随机变量会重新产生一次。3、定义投资胜利与否。假设相应的随机变量小于0.5,投资失败D4=0,否那么投资胜利D4=1。由于随机变量在区间0
26、,1中是均匀分布的,因此投资胜利河失败的次数各占一半。4、计算投资后的资本。按F9键,刷新随机数,进展新的100次模拟投资实验。5、用图形表示100次模拟投资实验中资本变化。按F9键,刷新随机数,可以得到新的资本变化图形。例二 回收带有随机性的风险投资模拟实验一项长期风险投资,初期投资100万元,分四年回收。利率r=5。每年投资报答是随机的,服从正态分布期望值和方差如下表:年份1234期望值(万元)40302520标准差(万元)2345求这个工程的平均净现值和内部回收率1234IR1R2R3R4投资净现值内部回收率 IRR:使NPV=0的利率NPVrIRR随着利率r的添加,NPV随之下降,NP
27、V降到0时的利率就是内部回收率IRR演示第一次作业有一项长期投资,分三年投入,投资额是确定的,回收额是随机的,服从正态分布。投资贴现率为5。每年需求投入的资金以及估计前五年的投资报答额的期望值和规范差如下表所示:年 份012345投资当年值(万元)305020回收期望值(万元)1520303510回收标准差(万元)22.53.03.54.0用随机模拟的方法求这个工程的平均净现值和内部回收率存储问题 存储是一种常见的景象。无论社会经济系统、环境生态系统、生物生命系统,普遍存在存储景象。流水消费线工位上的在制品堆栈在制品存储火力发电厂的燃煤堆场原料存储海洋、湖泊在调理大气环流中的作用能量存储人体内
28、部的脂肪能量存储存储的作用系统和环境中间构成缓冲,防止和减少环境变化对系统运转的影响系统内部各部分之间构成缓冲,起到各部分之间的解耦,提高系统的可靠性和稳定性提高存储量和存储本钱,降低系统中各部件的可靠性本钱和系统的运转本钱存储模型设有一个仓库,存放某种物品。每件物品在仓库中存放一天的费用为c元/件天,这种物品每天的需求量为dt,需求量dt可以是一个常数,也可以是随机变量。根据需求,每天从该仓库提取相应数量的物品。期初仓库中物品的数量为Q,随着每天提货,库存量不断减少。为了不断满足需求,需求经常补充物品。每次补充物品的数量为R,补充数量R可以是一个常数,也可以是一个变数。每补充一次物品的费用为
29、cs是一个常数,与补充物品的数量无关。每两次补充之间的时间间隔为T,补充时间间隔可以是常数,也可以是变数。假定一次补充需求的时间很短,可以忽略不计。当库存量减少到0,假设还不补充,需求就不能满足,这样就构成缺货。缺货可以用负的库存表示。下一次补充时,已构成的缺货可以补给,也可以不给。缺货会呵斥缺货损失,一件缺货每天的损失为s,普通情况下,缺货损失要比正常库存费用大。该存储系统的总费用由库存费用、补充费用和缺货损失三部分组成。存储模型的分类按需求类型分确定性需求随机性需求按补充周期分定期补充:补充周期为t不定期补充:设立最低库存L(Low),实践库存等于或低于最低库存,立刻补充按补充数量分定值补
30、充:无论补充时库存量还有多少,每次补充到一个库存的最高值H(High)等值补充:无论补充时库存量还有多少,每次补充一个设定值R(Refreshment)t定期等值补充不允许缺货TTTRRt定期等值补充允许缺货TTTRRt定期定值补充允许缺货TTTHHtTTT定期定值补充不允许缺货Ht不定期定值补充不允许缺货Lt不定期定值补充允许缺货HL不定期等值补充不允许缺货tRLRt不定期等值补充允许缺货RLR确定性库存模型确定性库存模型的根本假设:每天的需求量是一个常数d,每件物品每天的存储费用为c不允许缺货,存储量降到0,立刻补充。补充瞬时完成。每次补充数量相等为Q。每次补充费用为Cs,两次补充的时间间
31、隔相等设为T。QTQTQ=Td0,T内平均存储量0,T内存储费用=0,T内总费用:0,T内平均费用:补充周期T变化,使平均费用最小,即最优补充周期:最优补充批量经济批量:存储问题经济批量的模拟模型见“库存补充战略第二次作业:用Excel建立库存随机模拟模型1、建立确定性存储模型,其中补充批量Q=200,库存费用c=5元/件天,补充费用Cs20元/次,需求量d=10件/天,不允许缺货,存储量为0时立刻将存储量补充到Q。用模拟方法求使总费用最小的经济批量。2、建立随机性存储模型,库存费用c=5元/件天,补充费用Cs20元/次,需求量d服从正态分布,期望值为10元/天,规范差为2件/天,不允许缺货,
32、存储量为0时立刻补充到Q200件。用模拟方法求使总费用最小的经济批量Q。模拟时间为50天。3、建立随机性存储模型,库存费用c=5元/件天,补充费用Cs20元/次,需求量d服从正态分布,期望值为10元/天,规范差为2件/天,不允许缺货,存储量小于或等于10件时立刻补充Q100件。用模拟方法求使总费用最小的经济批量Q。模拟时间为50天。多目的决策多目的决策的根本概念设决策方案X的集合为,每一个决策X 都有K个目的值全为极小化目的,记为minf1(X),f2(X),fk(X)假设有两个决策X1、X2,第一个决策的K个目的都小于第二个决策相应的K个目的,即f1(X1) f1(X2),f2(X1) f2
33、(X2),fk(X1) fi(X*)那么称X*为一个Pareto解也称为非劣解、有效解假设有一个以上的Pareto解,这些Pareto解组成的集合称为Pareto集。f1(X)f2(X)f(x)xPareto 集x1x2x4x5x3图中x1、x5为劣解,x2、x3、x4为Pareto解劣解劣解Pareto解集的图解max z1=3x1+2x2max z2=-x1+2x2s.t. x1+ x2 6 2x1+ x2 10 x1+2x2 10 x1,x20目的函数线性加权: z=1z1+ 2z2 01 ,21 1+ 21由图解可以看出,最优解必定是一个Pareto解。6543210123456z2z
34、11z1+ 2z2多目的线性规划f1(x)f2(x)非劣解集Pareto 集多目的线性规划的Pareto解集劣解多目的决策的方法一、多目的转化为单目的1、评价函数法F(X)=Uf1(X),f2(X),fK(X)将多目的转化为单目的线性加权法F(X)=1f1(X)+ 2f2(X)+ + KfK(X)其中01, 2, ,K1,称为目的权重。例1:住房选择决策空间是离散的面积(m2)单价(元/m2)朝向地段楼层住房A2004800南丙四层住房B1805500西甲七层住房C1504000东乙三层确定各目的最理想和最不理想的值,将各目的进展归一化处置最理想的值为1,最不理想的值为0,将各决策方案的实践目
35、的值转化为01之间的值。面积(m2)单价(元/m2)朝向地段楼层最好200 (1.0)3000 (1.0)南 (1.0)甲 (1.0)三层 (1.0)最差75 (0.0)6000 (0.0)北 (0.0)丁 (0.0)一层 (0.0)实际指标A2004800南丙四层B1805500西甲七层C1504000东乙三层归一化A1.00.4001.00.40.9B0.840.1670.41.00.6C0.600.66确定各目的的权重面积(m2)单价(元/m2)朝向地段楼层评价值目标权重50.20.1住房A1.00.4001.090住房B0.84
36、0.1670.41.00.60.580住房C0.600.660.695*住房A2004800南丙四层住房B1805500西甲七层住房C1504000东乙三层根据评价值,选择住房C是最优决策。线性加权法的缺陷是各目的的权重完全由客观确定,而权重的选取对决策结果起着非常关键的作用。设目的重要性由大到小依次为:单价面积朝向地段楼层确定目的权重1 +2 + 3 + 4 + 5=1,1 1 2 3 4 50计算各方案的评价目的F(X)= 4fi(X),评价目的最高的为最优决策线性加权法的优点方便直观,简单易行可以利用丰富的单目的决策方法和软件缺陷权重确实定完全靠决策者客观判别对不同量
37、纲的目的,合成以后的目的实践意义不明层次分析法 AHP,Analysis of Hierarchy Process层次分析法是由T. L. Saaty提出的一种确定多目的决策中各目的的权重的方法,不仅在多目的决策中有重要作用,在管理以外的其它学科也有许多运用。在多目的决策中,各目的的权重对分析结果具有重要影响,但权重确实定比较困难。层次分析法的根底是目的的分层和对同一层次的各目的的重要性进展两两比较,使确定各目的的权重的义务具有可操作性。矩阵的特征向量和特征根层次分析法的原理单层次模型多层次模型矩阵的特征向量和特征根设A是nn非奇特的矩阵,假设存在一个实数0和一个n1的非零向量V,满足AV=
38、V那么称V为矩阵A的特征向量, 为矩阵A的一个特征根。例如有两个特征向量和相应的特征根矩阵特征根的计算由线性代数可知,方程组 AV= V 即 (A- I)V=0有非零解的条件是系数行列式 | A- I |=0。其中 I 为单位矩阵。例如展开行列式(-4- )(3- )+10=0,2 20求解二次方程,得到矩阵的特征根 11, 22对于高阶矩阵,用行列式计算特征根需求求解高次方程,计算比较复杂,可以采用叠代法。判别矩阵特征向量和特征根的叠代算法 任取一个初始n1向量计算曾经收敛。因此判别矩阵的特征向量并且max=1特征向量为问题2:能否可以编制一个用叠代法计算矩阵特征向量和特征根的小程序?求判别
39、矩阵特征向量和特征根近似值的“和法将每一列相加,得到:特征向量为归一化问题3:求矩阵特征根还有一个近似的方法称为“幂法,本人查阅文献学会这种方法。层次分析法原理设n个物体,分量分别为w1,w2,wn,总总量将w1,w2,wn 归一化,即令归一化以后的分量满足假设知这n个物体总量两两比较的值,能否求出它们归一化的分量?设n个物体分量的两两比较判别矩阵如下例如,四个物体的分量为 w1=2,w2=1,w3=3,w4=4公斤它们的总分量W=10公斤,归一化的分量为四个物体两两比较的判别矩阵为这个矩阵具有以下特点: 1、对角线上的元素aii=1 i=1,2,n 2、以对角线对称的元素互为倒数 aij=1
40、/aji i,j=1,2,n 3、各物体之间的相对分量比值是一致的 aij=aik/ajk i,j=1,2,n 4、n个物体归一化的分量组成的向量是判别矩阵的一个特征向量,对应的最大特征根max=n。因此,只需给出判别矩阵,就可以求出n个物体的归一化分量。同样,在多目的决策中,假设能给出各目的重要性两两比较的判别矩阵,就可以求出这些目的归一化的相对重要性。设目的C由n个元素A1,A2,An组成,对这n个元素相对于目的C的重要性作两两比较,构成以下判别矩阵:其中aij=1, 2, 3, 4, 5, 6, 7, 8, 9以及1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9。这些数字的
41、含义为:CA1A2AnA1a11a12a1nA2a21a22a2nAnan1an2annaij含义1元素 i 和元素 j 同等重要3元素 i 比元素 j 稍微重要5元素 i 比元素 j 明显重要7元素 i 比元素 j 强烈重要9元素 i 比元素 j 绝对重要与物体的分量之比不同,目的的重要性判别矩阵能够是不一致的。即能够出现A1比A2重要,A2比A3重要,A3又比A1重要这样的判别。假设不一致性在一定的范围以内,判别矩阵还是有效的,不一致性超出一定的范围,判别矩阵的有效性就有问题。线性代数可以证明,判别矩阵的不一致性可以由矩阵的最大特征根max表示,当判别矩阵完全一致时, maxn,不完全一致
42、时, maxn, max越大阐明不一致性越严重。单层次分析法的步骤:构造组成目的各元素的重要性两两比较判别矩阵;求解判别矩阵的最大特征根max和相应的特征向量 ;判别矩阵的一致性检验。假设经过一致性检验,得到的特征向量就是各元素的权重。一致性检验的步骤如下:计算一致性目的C.I.计算平均随机一致性目的R.I. 这个目的是随机产生的不同维数的判别矩阵的特征根的平均值计算一致性比例当C.R.0.1时,以为判别矩阵的一致性是可以接受的。n12345678910R.I.000.520.891.121.261.361.411.461.49n1112131415R.I.1.521.541.561.581.
43、59理想的住房A单价C1面积C2楼层C3地段C4朝向C5温馨B2经济B1便利B3建立目的的层次构造对目标A经济B1舒适B2便利B3经济B1137舒适B21/313便利B31/71/31单层分析:层次B对目的A的两两判别矩阵理想的住房A温馨B2经济B1便利B3计算B-A判别矩阵的特征向量和特征根一致性检验层次C对目的B1的两两判别矩阵经济B1单价C1面积C2楼层C3地段C4朝向C5经济单价面积楼层地段朝向单价11517面积11517楼层1/51/511/53地段11519朝向1/71/71/31/91max=5.1212C.I.=0.0303R.I.=1.12C.R.=0.020.1层次C对目的
44、B3的两两判别矩阵便利B3单价C1面积C2楼层C3地段C4朝向C5便利单价面积楼层地段朝向单价111/31/71面积111/31/71楼层3311/53地段77517朝向111/31/71max=5.087C.I.=0.022R.I.=1.12C.R.=0.0190.1理想的住房A温馨B2经济B1便利B3单价C1面积C2楼层C3地段C4朝向C50.6540.2580.0880.2810.2810.0730.567.得到分层次的权重B对A的权重经济 (B1)舒适 (B2)便利 (B3)C对A的总权重权重排序0.6540.2580.088C对B的权重单价 (C1)0.2810.0400.0730.
45、201三面积 (C2)0.2810.3790.0730.288二楼层 (C3)0.0860.1900.2140.124四地段 (C4)0.3180.2990.5670.335一朝向 (C5)0.0320.0920.0730.051五计算各基层要素对总目的的权重项目总权重楼房A楼房B楼房C单价C10.2010.40.1670.667面积C20.2881.00.840.6楼层C30.1地段C40.33朝向C50.0511.00.40.7总评分0.6650.4040.701计算各决策方案的评分案例1:自行车的功能价值分析编号名称数量价格编号名称数量价格A前轮
46、圈及辐条1副I中轴1个B后轮圈及辐条1副J踏脚及牙盘1套C前轮内外胎1副K链条1条D后轮内外胎1副L链罩1个E车身1个M车闸1副F车把及前叉1副N挡泥板1副G前轴1个O座凳1个H后轴及飞轮1副P后架1个自行车的部件称号、本钱如下表所示:自行车的功能行进其他温馨、方便等载重前轮圈及辐条 后轮圈及辐条座凳后架自行车部件的功能层次构造用层次分析方法确定各部件的功能权重,与各部件的价钱权重比较,部件的功能权重和价钱权重能否匹配。根据两个权重匹配的情况,提出改良的意见。第三次作业:自行确定一个产品,建立它的功能层次构造模型,列出它的零部件构造和零部件本钱比重,运用层次分析方法确定各零部件的功能权重,进展
47、功能本钱分析。目的规划Goal Programming 线性规划是一种运用非常广泛的优化模型,但它也有以下明显的缺陷:1、只能求解单目的问题;2、把约束条件和目的函数作为完全不同的概念来处置,而在实践问题中,目的函数和约束条件往往是可以互换的,并没有严厉的区别。3、约束条件是刚性的,即可行解必需在可行域中。在一些实践问题中,约束条件是可以突破的,约束条件的右边常数并不是变量上限或下限,而是一个希望可以最接近的目的。4、假设约束条件互不相容,那么线性规划无可行解。 针对线性规划的以上缺陷, A. Charnes和W. Cooper提出了目的规划Goal Programming,这是一种求解多目的
48、线性规划的方法。目的规划分为无优先级的目的规划和有优先级的目的规划。目的规划的图解设线性规划问题为max z=2x1+3x2s.t. x1- x2 1 x1+x2 2 x2 3 x1,x2 0由图解可知,线性规划的最优解为:x1=4,x2=3 max z=1701234321-1min z=n1+p1+n2+p2+n3+p3+n4+p4s.t. 2x1+3x2+n1-p1 =12 (1) x1- x2 +n2-p2 = 1 (2) x1+ x2 +n3-p3 = 2 (3) x2 +n4-p4 = 3 (4) x1, x2, n1, p1,n2, p2, n3, p3, n4, p4 0相应的
49、目的规划问题为其中p1、p2、p3、p4称为正偏向变量,n1、n2、n3、n4称为负偏向变量。普通方式表示为:012344321-1p3=3n4=12x1+3x2=12 (1)x2=3 (4)x1-x2=1 (2)x1+x2=2 (3)n1=4n2=2p3=1n4=1用LINDO求解以上问题,得到目的规划的最优解为:min z=4,x1=3,x2=2p1=0, p2=0, p3=3, p4=0n1=0, n2=0, n3=0, n4=1 min z=n1+p1+n2+p2+n3+p3+n4+p4s.t. 2x1+3x2+n1-p1 =12 (1) x1- x2 +n2-p2 = 1 (2) x
50、1+ x2 +n3-p3= 2 (3) x2+n4 -p4 = 3 (4) x1, x2, ni, pi 0产品A产品B产品C条件利润(万元/吨)941总利润最大化耗用原料(吨/吨)425耗用原料总量不超过38吨排放污染(m3/吨)213排放污染总量不超过26m3销售价格(万元/吨)301020销售总额不低于100万元总产量(吨)111总产量不低于18吨假设以利润为目的函数,线性规划模型为:max z=9x1+4x2+x3s.t. 4x1+ 2x2+ 5x3 381原料总量约束 2x1+ x2+ 3x3 262排放污染约束 30 x1+10 x2+20 x31003销售总额约束 x1+ x2+
51、 x3 184总产量约束 x1, x2, x3 0目 标产品A产品B产品C目标的理想值正偏差变量负偏差变量利润(万元/吨)94177p1n1耗用原料(吨/吨)42538p2n2排放污染(m3/吨)21326p3n3销售价格(万元/吨)301020100p4n4总产量(吨)11118p5n5假设将利润、耗用原料等五个要素作为目的,确定各目的的理想值以及偏向变量如下:假设目的大于理想值,正偏向变量大于0,小于理想值,负偏向变量大于0。因此,对第i个目的,有假设各目的无优先级,要使一切的目的总偏向最小,即目的规划的模型为:对于每一个目的,正偏向变量和负偏向变量在系数矩阵中的列向量是两个一样的单位向量
52、,是线性相关的,不能够同时出如今基矩阵中,因此,以上问题的任何一个根底可行解,同一个目的的正负偏向变量,不能够两个同时大于0。这一结果的实践意义也是很清楚的:任何一个目的,不能够既大于理想值,又小于理想值。产品A产品B产品C目标的理想值正偏差变量负偏差变量产量(吨)0100RHSpini达 到 的 目 标 值利润(万元)4077037耗用原料(吨)3038018排放污染(m3)1026016销售价格(万元)10010000总产量(吨)101808用单纯形法,得到目的规划的最优解、各目的的值以及偏向变量的值最优解目的值偏向变量目的规划的特点可以求解多目的问题。抑制了线性规划只能求解单目的的缺陷。
53、用目的Goal的概念取代了线性规划中的“约束条件,用偏离各目的的总偏向最小取代了线性规划中的目的函数,消除了线性规划中目的函数和约束条件的对立。各目的值既可以正偏向,也可以负偏向,抑制了线性规划约束条件的刚性。目的规划总是有可行解的。抑制了线性规划无解的问题。目的有优先级的目的规划在上面的例子中,利润、耗用原料、排放污染、销售额、总产量等五个目的是一视同仁的,最优解是使偏离五个目的的总偏向之和最小。在实践问题中,这些目的往往是有轻重缓急的。产品A产品B产品C目标的理想值正偏差变量负偏差变量产量(吨)0100RHSpini达 到 的 目 标 值利润(万元)4077037耗用原料(吨)303801
54、8排放污染(m3)1026016销售价格(万元)10010000总产量(吨)101808确定五个目的的优先级PiPi=1,2,3,4,5,数字越小优先级越高目 标产品A产品B产品C优先级Pi目标的理想值正偏差变量负偏差变量利润(万元/吨)941177p1n1耗用原料(吨/吨)425538p2n2排放污染(m3/吨)213326p3n3销售价格(万元/吨)3010202100p4n4总产量(吨)111418p5n5目的有优先级的目的规划解法有:加权法字典序法目 标产品A产品B产品C优先级权重理想值正偏差负偏差利润(万元/吨)94111000077p1n1耗用原料(吨/吨)4255138p2n2排
55、放污染(m3/吨)213310026p3n3销售价格(万元/吨)30102021000100p4n4总产量(吨)11141018p5n5目的具有优先级的目的规划解法加权法产品A产品B产品C理想值正偏差负偏差产量(吨)0100RHSpini无 优 先 级 利润(万元)4077037耗用原料(吨)3038018排放污染(m3)1026016销售价格(万元)10010000总产量(吨)101808产品A产品B产品C理想值正偏差负偏差产量(吨)119.250RHSpini有 优 先 级1利润(万元)7777005耗用原料(吨)3838003排放污染(m3)19.252606.752销售价格(万元)19
56、2.510092.504总产量(吨)19.25181.250目的具有优先级的目的规划解法字典序优化Lexico-optimization字典序法的原那么是:首先不顾其它目的,对优先级最高的目的进展优化,得到使第一级目的最优的决策变量的值以及第一级目的函数的值;然后在不使第一级目的变差的前提下,优化第二级目的;用同样的原那么,按优先级从高到低,依次优化各级目的,直至一切目的都优化终了。min(n1+p1),(n2+p2),(n3+p3),(n4+p4)s.t. 2x1+2x2+n1-p1 =20优先级1 x1+ x2 +n2-p2 =20 优先级2 x1 +n3-p3 = 5 优先级3 x2 +
57、n4-p4= 3 优先级4x1,x2,n1,n2,n3,n4,p1,p2,p3,p40字典序优化的图解法min(n1+p1),(n2+p2),(n3+p3),(n4+p4)s.t. 2x1+2x2+n1-p1 =16(1) x1+ x2 +n2-p2 =4 (2) x1 +n3-p3 = 2(3) x2 +n4-p4= 3(4) x1,x2,ni,pi0024688642x1x22x1+2x2=16x1+x2=4x1=2x2=3p1n1p2n2p3n3p4n4第一优先级最优解第二优先级最优解第三优先级最优解第四优先级最优解min(n1+p1),(n2+p2),(n3+p3),(n4+p4)s.
58、t. 2x1+2x2+n1-p1 =16优先级P1 x1+ x2 +n2-p2 =4优先级P2 x1 +n3-p3 = 2优先级P3 x2 +n4-p4= 3优先级P4 x1,x2,ni,pi0具有目的优先级的目的规划单纯形表x1x2n1p1n2p2n3p3n4p4RHSP1-1-10P2-1-10P3-1-10P4-1-10n1221-116n2111-14n3101-12n4011-13x1x2n1p1n2p2n3p3n4p4RHSP1220-216P2110-24P3100-22P4010-23n1221-116n2111-14n3101-12n4011-13消去基变量n1,n2,n3,
59、n4在目的函数中的系数对第一优先级目的P1优化。x1进基,n3离基,1为主元。消去主元所在列的其它元素x1x2n1p1n2p2n3p3n4p4RHSP1020-2-2212P2010-2-112P300-1-10P4010-23n1021-1-2212n2011-1-112x1101-12n4011-13第一优先级目的P1未到达最优解。x2进基,n2离基,1为主元。消去主元所在列的其它元素x1x2n1p1n2p2n3p3n4p4RHSP1000-2-22008P200-1-1000P300-1-10P400-111-10-21n1001-1-22008x2011-1-112x1101-12n400-111-11-11第一优先级目的P1未到达最优解。p2进基,n4离基,1为主元。消去主元所在列的其它元素x1x2n1p1n2p2n3p3n4p4RHSP1000-200-22-226P200-201-11-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- XX年医院工作计划范文
- 年秋青龙中心小学校德育工作计划小鱼BLOG
- 度应急救援预案演练计划
- 采购内勤下半年工作计划
- “学校新学期工作计划范文”学校工作计划范文
- 自媒体运营计划书
- 《语法复习名词》课件
- 信息技术教师个人专业发展计划
- 教学科研工作计划
- 《旧交规对比》课件
- 毛泽东思想和中国特色社会主义理论体系概论智慧树知到课后章节答案2023年下德州学院
- 个人房屋租赁缴纳税委托书范本
- 商业模式画布模板
- 新概念英语第一册课文全中文
- 医疗机构依法执业自查表
- 医院氧气泄漏的应急预案脚本
- 信用信息共享平台建设工作方案
- 老年抑郁量表(GDS)
- TCSAE 279-2022 汽车电动转向系统噪声台架性能要求及测试方法
- 1117 机电控制与可编程序控制器技术
- 如愿三声部合唱简谱
评论
0/150
提交评论