版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1设,则、的大小关系为( )ABCD2已知随机变量服从正态分布,( )ABCD3已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为( )A9B7CD4已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则( )ABCD5设复数,则=( )A1BCD6以,为直径的圆的方程是ABCD7设集合,则 ()ABCD8已知纯虚数满足,其中为虚数单位,则实数等于( )AB1CD29已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( )ABCD10对两个变量进行回归分析,给出如下一组样本数据:,下列函数模型中拟合较好的是( )ABCD11如图,在
3、等腰梯形中,为的中点,将与分别沿、向上折起,使、重合为点,则三棱锥的外接球的体积是( )ABCD12某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13某市公租房源位于、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,则该市的任意位申请人中,恰好有人申请小区房源的概率是_ .(用数字作答)14西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.
4、现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为_15已知无盖的圆柱形桶的容积是立方米,用来做桶底和侧面的材料每平方米的价格分别为30元和20元,那么圆桶造价最低为_元.16已知,圆,直线PM,PN分别与圆O相切,切点为M,N,若,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知是等差数列,满足,数列满足,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.18(12分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.19(12分)在平面直角坐标系中,直
5、线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.20(12分)如图,在三棱柱中,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.21(12分)己知等差数列的公差,且,成等比数列.(1)求使不等式成立的最大自然数n;(2)记数列的前n项和为,求证:.22(10分)如图,直线y=2x-2与抛物线x2=2py(p0)交于M1,M2两点,直线y=p2与y轴交于点F,且直线y=p2恰好平分M1FM2.(1)求p的值;(2
6、)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M3交直线y=p2于点B,求OAOB的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】因为,所以且在上单调递减,且 所以,所以,又因为,所以,所以.故选:D.【点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.2B【解析】利用正态分布密度曲线的对称性可得出,进而可得出结果.【详解】,所以,.故选:B.【点睛】本题考查利用正态分布密度曲线的对称性求概率,属于基础题.3C【解析】
7、根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,则.因为平面,平面,所以.又,所以平面,则.易知,.在中,即,化简得.在中,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.4D【解析】由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.5A【解析】根据复数的除法运算,代入化简即可求解.【详解】复数,则故选:A.
8、【点睛】本题考查了复数的除法运算与化简求值,属于基础题.6A【解析】设圆的标准方程,利用待定系数法一一求出,从而求出圆的方程.【详解】设圆的标准方程为,由题意得圆心为,的中点,根据中点坐标公式可得,又,所以圆的标准方程为:,化简整理得,所以本题答案为A.【点睛】本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.7B【解析】直接进行集合的并集、交集的运算即可【详解】解:; 故选:B【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.8B【解析】先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【详解】因为,所以,又因为是纯虚
9、数,所以,所以.故选:B.【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.9B【解析】函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围【详解】由题在上恒成立.即,的图象永远在的上方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围10D【解析】作出四个函数的图象及给出
10、的四个点,观察这四个点在靠近哪个曲线【详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D【点睛】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好11A【解析】由题意等腰梯形中的三个三角形都是等边三角形,折叠成的三棱锥是正四面体,易求得其外接球半径,得球体积【详解】由题意等腰梯形中,又,是靠边三角形,从而可得,折叠后三棱锥是棱长为1的正四面体,设是的中心,则平面,外接球球心必在高上,设外接球半径为,即,解得,球体积为故选:A【点睛】本题考查求球的体积,解题关键是由已知条件确定折叠成的三棱锥
11、是正四面体12C【解析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选二、填空题:本题共4小题,每小题5分,共20分。13【解析】基本事件总数,恰好有2人申请小区房源包含的基本事件个数,由此能求出该市的任意5位申请人中,恰好有2人申请小区房源的概率【详解】解:某市公租房源位于、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,该市的任意5位申请人中,基本事件总数,该市的任意5位申请人中,恰好有2人申请小区房源包含的基本事件个数:,该市的
12、任意5位申请人中,恰好有2人申请小区房源的概率是故答案为:【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于中档题14【解析】由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法,其中能构成勾股数的有共三种,所以,所求概率为.故答案为【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.15【解析】设桶的底面半径为,用表示出桶的总造价,利用基本不等式得出最小值.【详解】设桶的底面半径为,高为,则,故,圆通的造价为解法一: 当且仅当,即时取等号.解法二:,则,令,即,解得,此函数在单调递增;令,即,解得,此函数在上单调
13、递减; 令,即,解得,即当时,圆桶的造价最低.所以 故答案为:【点睛】本题考查了基本不等式的应用,注意验证等号成立的条件,属于基础题.16【解析】由可知R为中点,设,由过切点的切线方程即可求得,,代入,则在直线上,即可得方程为,将 ,代入化简可得,则直线过定点,由则点在以为直径的圆上,则.即可求得.【详解】如图,由可知R为MN的中点,所以,设,则切线PM的方程为,即,同理可得,因为PM,PN都过,所以,所以在直线上,从而直线MN方程为,因为,所以,即直线MN方程为,所以直线MN过定点,所以R在以OQ为直径的圆上,所以.故答案为: .【点睛】本题考查直线和圆的位置关系,考查圆的切线方程,定点和圆
14、上动点距离的最值问题,考查学生的数形结合能力和计算能力,难度较难.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和试题解析:()设等差数列an的公差为d,由题意得d= 1an=a1+(n1)d=1n设等比数列bnan的公比为q,则q1=8,q=2,bnan=(b1a1)qn1=2n1, bn=1n+2n1()由()知bn=1n+2n1, 数列1n的前n项和为n(n+1),数列2n1的前n项和为1= 2
15、n1,数列bn的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列求和18(1);(2)4【解析】(1)根据已知用二倍角余弦求出,进而求出,利用正弦定理,即可求解;(2)由边角,利用余弦定理结合基本不等式,求出的最大值,即可求出结论.【详解】(1),由正弦定理得.(2)由(1)知,所以,当且仅当时,的面积有最大值4.【点睛】本题考查正弦定理、余弦定理、三角恒等变换解三角形,应用基本不等式求最值,属于基础题.19(1),;(2)【解析】(1)利用代入法消去参数可得到直线的普通方程,利用公式可得到曲线的直角坐标方程;(2)设直线的参数方程为(为参数),代入得,根据直
16、线参数方程的几何意义,利用韦达定理可得结果.【详解】(1)由题意得点的直角坐标为,将点代入得则直线的普通方程为. 由得,即.故曲线的直角坐标方程为. (2)设直线的参数方程为(为参数),代入得 设对应参数为,对应参数为则,且.【点睛】参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题20(1)证明见解析;(2).【解析】(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为
17、轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值【详解】(1)证明:因为,为中点,所以,又,所以平面,又平面,所以,又,所以平面.(2)由已知及(1)可知,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则,.设平面的法向量,则,即,令,则;设平面的法向量,则,即,令,则,所以.故锐二面角的余弦值为.【点睛】本题考查证明线面垂直,解题时注意线面垂直与线线垂直的相互转化考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论21(1);(2)证明见解析【解析】(1)根据,成等比数列,有,结合公差,求得通项,再解不
18、等式.(2)根据(1),用裂项相消法求和,然后研究其单调性即可.【详解】(1)由题意,可知,即,.又,.,故满足题意的最大自然数为.(2),. 从而当时,单调递增,且,当时,单调递增,且,所以,由,知不等式成立.【点睛】本题主要考查等差数列的基本运算和裂项相消法求和,还考查了运算求解的能力,属于中档题.22(1)p=4;(2)OAOB=20.【解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)x1+x2x1x2=0,结合跟鱼系数关系,可求得p=4;(2)设M3(x3,x328),A(t,2),B(a,2),由A,M2,M3,三点共线得kM2M3=kAM2,再次代入点的坐标并化简得x2x3-t(x2+x3)=-16,同理由B,M3,M1三点共线,可得x1x3-a(x1+x3)=-16,化简得at=16,故OAOB=at+4=16+4=20.试题解析:(1)由y=2x-2x2=2py,整理得x2-4px+4p=0,设M1(x1,y1),M2(x2,y2),则=16p2-16p0 x1+x2=4px1x2=4p,因为直线y=p2平分M1FM2,kM1F+kM2F=0,所以y1-p2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国定制酒行业营销创新模式及未来5发展趋势报告
- 2024年物流驾驶员服务外包合同
- 眉山职业技术学院《灾害卫生学》2023-2024学年第一学期期末试卷
- 2024年度拍卖艺术品线上线下销售合作协议范本3篇
- 马鞍山职业技术学院《企业经营实战》2023-2024学年第一学期期末试卷
- 马鞍山学院《机器学习及应用》2023-2024学年第一学期期末试卷
- 2024年模具设计与生产合同
- 洛阳职业技术学院《公共卫生理论和实践》2023-2024学年第一学期期末试卷
- 2025年连云港货运上岗证模拟考试0题
- 2024年古建筑修复施工劳务分包合同范本及细则2篇
- 期末综合卷(含答案) 2024-2025学年苏教版数学六年级上册
- 2025春夏运动户外行业趋势白皮书
- 中医筋伤的治疗
- 【MOOC】英文技术写作-东南大学 中国大学慕课MOOC答案
- 护理产科健康教育
- 2024年21起典型火灾案例及消防安全知识专题培训(消防月)
- 人教版四年级上册数学【选择题】专项练习100题附答案
- 从创意到创业智慧树知到期末考试答案章节答案2024年湖南师范大学
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 国开《Windows网络操作系统管理》形考任务4-配置故障转移群集服务实训
- 计价格[1999]1283号_建设项目前期工作咨询收费暂行规定
评论
0/150
提交评论