人教A版选择性必修第三册 第八章样本相关系数 课件(74张)_第1页
人教A版选择性必修第三册 第八章样本相关系数 课件(74张)_第2页
人教A版选择性必修第三册 第八章样本相关系数 课件(74张)_第3页
人教A版选择性必修第三册 第八章样本相关系数 课件(74张)_第4页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、8.1.2样本相关系数第八章8.1成对数据的统计相关性1.结合实例,了解样本相关系数的统计含义.2.了解样本相关系数与标准化数据向量夹角的关系.3.结合实例,会通过样本相关系数比较多组成对样本数据的相关性.学习目标导语散点图可以说明变量间有无线性相关关系,但无法量化两个变量之间的相关程度的大小,更不能精确地说明成对样本数据之间关系的密切程度,那么我们如何才能寻找到这样一个合适的量来对成对样本数据的相关程度进行定量分析呢?这就是我们这节课要研究的内容.随堂演练课时对点练内容索引一、样本的相关系数二、相关关系的强弱三、样本相关系数的实际应用一、样本的相关系数提示散点图(略),发现正相关时散点大多数

2、分布在第一象限、第三象限,负相关时散点大多数分布在第二象限、第四象限.构造一个量:一般情形下,Lxy0表明成对样本数据正相关;Lxy0时,称成对样本数据正相关;当r0时,称成对样本数据负相关.例1假设关于某种设备的使用年限x(单位:年)与所支出的维修费用y(单位:万元)有如下统计资料:x23456y2.23.85.56.57.0反思感悟利用样本相关系数r判断线性相关关系,需要应用公式计算出r的值,由于数据较大,有时需要借助计算器.跟踪训练1现随机抽取了某中学高一10名在校学生,他们入学时的数学成绩x(分)与入学后第一次考试的数学成绩y(分)如表所示:学生号12345x1201081171041

3、03y8464846869学生号678910 x11010410599108y6869465771所以样本相关系数为二、相关关系的强弱知识梳理样本相关系数r的取值范围为 .当|r|越接近1时,成对样本数据的线性相关程度越 ;当|r|越接近0时,成对样本数据的线性相关程度越 .注意点:当|r|1时,表明成对样本数据都在一条直线上,即两个变量之间满足一种线性关系.当r0时,表明成对数据间没有线性相关关系,但不排除它们之间有其他相关关系.1,1强弱例2(1)对四组数据进行统计,获得以下散点图,关于其样本相关系数的比较,正确的是A.r2r40r3r1 B.r4r20r1r3C.r4r20r3r1 D.

4、r2r40r1r3解析由给出的四组数据的散点图可以看出,题图1和题图3是正相关,样本相关系数大于0,题图2和题图4是负相关,样本相关系数小于0,题图1和题图2的样本点集中在一条直线附近,所以相关性更强,所以r1接近于1,r2接近于1,由此可得r2r40r30知x与y正相关,由样本相关系数r20.956 80知u,v负相关,又|r1|r2|,变量u与v的线性相关性比x与y的线性相关性强.反思感悟线性相关强弱的判断方法(1)散点图:散点图只是粗略作出判断,其图象越接近直线,相关性越强.(2)样本相关系数:样本相关系数能够较准确的判断相关的程度,其绝对值越大,相关性越强.跟踪训练2某厂的生产原料耗费

5、x(单位:百万元)与销售额y(单位:百万元)之间有如下的对应关系:x2468y30405070解画出(x,y)的散点图如图所示.(1)画出(x,y)的散点图;(2)计算x与y之间的样本相关系数,并刻画它们的相关程度.由样本相关系数r0.982 7,可以推断生产原料耗费与销售额这两个变量正线性相关,且相关程度很高.三、样本相关系数的实际应用例3以下是收集到的新房屋的销售价格y(万元)和房屋的大小x(m2)的数据.(1)画出数据的散点图;解画出散点图如图所示.房屋大小x/m211511080135105销售价格y/万元24.821.618.429.222由此可知,新房屋的销售价格和房屋的大小这两个

6、变量正线性相关,且相关程度很强.反思感悟当样本相关系数|r|越接近1时,两个变量的相关关系越强,当样本相关系数|r|越接近0时,两个变量的相关关系越弱.跟踪训练3在一组成对样本数据为(x1,y1),(x2,y2),(xn,yn)(n2,x1,x2,xn不全相等)的散点图中,若这组成对样本数据的样本相关系数为1,则所有的样本点(xi,yi)(i1,2,n)满足的方程可以是解析这组成对样本数据的样本相关系数为1,这一组成对样本数据(x1,y1),(x2,y2),(xn,yn)线性相关,且是负相关.可排除B,C,D,故选A.1.知识清单:(1)样本相关系数.(2)相关关系的强弱.(3)相关关系的实际

7、应用.2.方法归纳:数形结合.3.常见误区:样本相关系数绝对值的大小与相关程度的关系.课堂小结随堂演练1.(多选)对两个变量的样本相关系数r,下列说法正确的是A.|r|越大,相关程度越大B.|r|越小,相关程度越大C.|r|趋近于0时,没有线性相关关系D.|r|越接近1时,线性相关程度越强1234解析对于A,|r|越大,相关程度越大,A正确;对于B,|r|越小,相关程度越小,B错误;对于C,|r|趋近于0时,线性相关关系越弱,C错误;对于D,|r|越接近1时,线性相关程度越强,D正确.2.给定y与x的一组成对样本数据,求得相关系数r0.690,则A.y与x线性不相关B.y与x正线性相关C.y与

8、x负线性相关D.以上都不对1234解析因为r0.6900,所以y与x负线性相关.12343.(多选)下面的各图中,散点图与样本相关系数r符合的是解析因为样本相关系数r的绝对值越接近1,线性相关程度越高,且r0时正相关,r0时负相关,故观察各选项,易知B不符合,A,C,D均符合.12340.8491234课时对点练则哪位同学的试验结果体现A,B两变量有更强的线性相关性A.甲 B.乙 C.丙 D.丁1.甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并分别求得样本相关系数r如下表:基础巩固12345678910111213141516甲乙丙丁r0.820.780.690.85解析|r|

9、越接近1,相关性越强,故选D.2.已知某产品产量与产品单位成本之间的样本相关系数为0.97,这说明二者之间存在着A.高度相关 B.中度相关C.弱度相关 D.极弱相关12345678910111213141516解析由|0.97|比较接近1知选A.3.下面的散点图与样本相关系数r一定不符合的是12345678910111213141516A. B. C. D.12345678910111213141516解析中,由散点图可得,两相关变量呈负相关,故错误;中,由散点图可得,两相关变量呈正相关,且样本相关系数可能是r0.75;中,若样本相关系数r1,则所有的点应该分布在一条直线上,散点图显然不符合,

10、故错误;中,若样本相关系数r1,则所有的点应该分布在一条直线上,散点图显然不符合,故错误.4.(多选)对于样本相关系数r,下列结论正确的为A.r1,0.75时,两变量负相关很强B.r0.75,1时,两变量正相关很强C.r(0.75,0.3或0.3,0.75)时,两变量相关性一般D.r0.1时,两变量相关性很强123456789101112131415165.(多选)对四对变量y和x进行线性相关检验,已知n是观测值组数,r是样本相关系数,下面四对变量y和x线性相关程度最高的两组是A.n7,r0.953 3B.n15,r0.301 2C.n17,r0.499 1D.n13,r0.995 01234

11、5678910111213141516解析样本相关系数r的绝对值越接近于1,变量x,y的线性相关程度越高.6.变量x与y相对应的一组成对样本数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量u与v相对应的一组成对样本数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量y与x之间的样本相关系数,r2表示变量V与U之间的样本相关系数,则A.r2r10 B.0r2r1C.r200,所以大多数的点都落在第一、三象限.123456789101112131415160.751234567891011121314151

12、69.5个学生的数学和物理成绩如表:学生学科ABCDE数学8075706560物理7066686462试用散点图和样本相关系数r判断它们是否有线性相关关系,若有,是正相关还是负相关?12345678910111213141516解(散点图法)涉及两个变量:数学成绩与物理成绩,可以以数学成绩为自变量,考察因变量物理成绩的变化趋势.以x轴表示数学成绩,y轴表示物理成绩,可得相应的散点图.由散点图可见,两者之间具有线性相关关系且是正相关.12345678910111213141516(样本相关系数法)列表:ixiyixiyi180706 4004 9005 600275665 6254 3564 9

13、50370684 9004 6244 760465644 2254 0964 160560623 6003 8443 72035033024 75021 82023 19012345678910111213141516两变量具有相关关系且是正相关.1234567891011121314151610.我国北方广大农村地区、一些城镇以及部分大中型城市的周边区域,还在大量采用分散燃煤和散烧煤取暖,既影响了居民基本生活的改善,也加重了北方地区冬季的雾霾天气.推进北方地区冬季清洁取暖,是重大民生工程、民心工程,关系北方地区广大群众温暖过冬,关系雾霾天能不能减少,是能源生产和消费革命、农村生活方式革命的重

14、要内容.国家发改委制定了煤改气、煤改电价格扶持新政策,从而使得煤改气、煤改电用户大幅度增加,下面条形图反映了某省连续7个月的煤改气、煤改电的用户数量.12345678910111213141516在给定坐标系中作出煤改气、煤改电用户数量y随月份t变化的散点图,并用散点图和样本相关系数说明y与t之间具有线性相关性.1234567891011121314151612345678910111213141516解作出散点图如图所示,由条形图数据和参考数据得,39.7549.242.79,12345678910111213141516y与t的样本相关系数近似为0.99,y与t的线性相关性相当高.综合运用

15、1234567891011121314151611.(多选)对于样本相关系数r,以下说法错误的是A.r只能是正值,不能为负值B.|r|1,且|r|越接近于1,相关程度越大;相反则越小C.|r|1,且|r|越接近于1,相关程度越小;相反则越大 D.r0,则x增大时,y也相应增大;若|r|越趋近于1,则x与y的线性相关程度越强;若r1或r1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上.其中正确的有A. B. C. D.12345678910111213141516解析根据样本相关系数的定义,变量之间的相关关系可利用样本相关系数r进行判断.当r为正数时,表示变量x,y正相

16、关;当r为负数时,表示两个变量x,y负相关;|r|越接近于1,相关程度越强;|r|越接近于0,相关程度越弱.故可知正确.123456789101112131415161234567891011121314151614.(多选)如图所示是某市2020年4月至2021年3月每月最低气温与最高气温的折线统计图,已知每月最低气温与最高气温的样本相关系数r0.83,则下列结论正确的是(若|r|0.75,则线性相关程度较强)A.每月最低气温与最高气温有较 强的线性相关性,且二者为正 线性相关B.月温差(月最高气温月最低气 温)的最大值出现在10月C.912月的月温差相对于58月, 波动性更大D.每月最高气

17、温与最低气温的平均值在所统计的前6个月里逐月增加12345678910111213141516解析每月最低气温与最高气温的样本相关系数r0.83,可知每月最低气温与最高气温有较强的线性相关性,且二者为正线性相关.由所给的折线图可以看出月温差(月最高气温月最低气温)的最大值出现在10月.912月的月温差相对于58月,波动性更大.每月的最高气温与最低气温的平均值在所统计的前5个月里逐月增加,在第6个月开始减少,所以A,B,C正确,D错误.拓广探究1234567891011121314151615.为考察两个变量x,y的相关性,搜集数据如表,则两个变量的线性相关程度x510152025y103105110111114A.很强 B.很弱 C.无相关 D.不确定12345678910111213141516故相关程度很强.1234567891011121314151616.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论