2022届宿迁市高三六校第一次联考数学试卷含解析_第1页
2022届宿迁市高三六校第一次联考数学试卷含解析_第2页
2022届宿迁市高三六校第一次联考数学试卷含解析_第3页
2022届宿迁市高三六校第一次联考数学试卷含解析_第4页
2022届宿迁市高三六校第一次联考数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1著名的斐波那契数列:1,1,2,3,5,8,满足,若,则( )A2020B4038C4039D40402如图,在中, ,是上的一点,若,则实数的值为( )ABCD3已知直线yk(x1)

2、与抛物线C:y24x交于A,B两点,直线y2k(x2)与抛物线D:y28x交于M,N两点,设|AB|2|MN|,则( )A16B16C120D124如图,在中,且,则( )A1BCD5已知的面积是, ,则( )A5B或1C5或1D6已知随机变量满足,.若,则( )A,B,C,D,7执行如图所示的程序框图后,输出的值为5,则的取值范围是( ). ABCD8已知全集U=x|x24,xZ,A=1,2,则CUA=( )A-1B-1,0C-2,-1,0D-2,-1,0,1,29记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为( )ABCD10已知,分别为内角,的对边,的面积

3、为,则( )AB4C5D11己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,垂足为,若的面积为,则到的距离为( )ABC8D612设、,数列满足,则( )A对于任意,都存在实数,使得恒成立B对于任意,都存在实数,使得恒成立C对于任意,都存在实数,使得恒成立D对于任意,都存在实数,使得恒成立二、填空题:本题共4小题,每小题5分,共20分。13已知实数满足(为虚数单位),则的值为_.14已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_15已知双曲线(a0,b0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tanPF2F12,则双曲线的离心率为_16如图,在矩

4、形中,为边的中点,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中, .求边上的高.,这三个条件中任选一个,补充在上面问题中并作答.18(12分)已知椭圆的右焦点为,过点且斜率为的直线与椭圆交于两点,线段的中点为为坐标原点.(1)证明:点在轴的右侧;(2)设线段的垂直平分线与轴、轴分别相交于点.若与的面积相等,求直线的斜率19(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员

5、,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为 (单位:元),

6、求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.20(12分)在中,是边上一点,且,.(1)求的长;(2)若的面积为14,求的长.21(12分)若数列满足:对于任意,均为数列中的项,则称数列为“数列”(1)若数列的前项和,试判断数列是否为“数列”?说明理由;(2)若公差为的等差数列为“数列”,求的取值范围;(3)若数列为“数列”,且对于任意,均有,求数列的通项公式22(10分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红

7、绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】计算,代入等式,根据化简得到答案.【详解】,故,故.故选:.【点睛】本题考查了斐波那契数列,意

8、在考查学生的计算能力和应用能力.2B【解析】变形为,由得,转化在中,利用三点共线可得.【详解】解:依题: ,又三点共线,解得故选:【点睛】本题考查平面向量基本定理及用向量共线定理求参数. 思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值. (2)直线的向量式参数方程: 三点共线 (为平面内任一点,)3D【解析】分别联立直线与抛物线的方程,利用韦达定理,可得,然后计算,可得结果.【详解】设, 联立则,因为直线经过C的焦点, 所以.同理可得,所以故选:D.【点睛】本题考查的是直线与抛物线的交点问题,

9、运用抛物线的焦点弦求参数,属基础题。4C【解析】由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【详解】由,则,即,所以,又共线,则.故选:C【点睛】此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.5B【解析】,,若为钝角,则,由余弦定理得,解得;若为锐角,则,同理得.故选B.6B【解析】根据二项分布的性质可得:,再根据和二次函数的性质求解.【详解】因为随机变量满足,.所以服从二项分布,由二项分布的性质可得:,因为,所以,由二次函数的性质可得:,在上单调递减,所以.故选:B【点睛】本题主要考查二项分布的性质及

10、二次函数的性质的应用,还考查了理解辨析的能力,属于中档题.7C【解析】框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满足输出结果,故.故选:C.【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.8C【解析】先求出集合U,再根据补集的定义求出结果即可【详解】由题意得U=x|x24,xZ=x|-2x2,xZ=-2,-1,0,1,2,A=1,2,CUA=-2,-1,0故选C【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题9C【解

11、析】据题意可知,是与面积有关的几何概率,要求落在区域内的概率,只要求、所表示区域的面积,然后代入概率公式,计算即可得答案【详解】根据题意可得集合所表示的区域即为如图所表示:的圆及内部的平面区域,面积为,集合,表示的平面区域即为图中的,根据几何概率的计算公式可得,故选:C【点睛】本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型解决本题的关键是要准确求出两区域的面积10D【解析】由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出 的值.【详解】解:,即,即. ,则.,解得., 故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本

12、关系.本题的关键是通过正弦定理结合已知条件,得到角 的正弦值余弦值.11D【解析】作,垂足为,过点N作,垂足为G,设,则,结合图形可得,从而可求出,进而可求得,由的面积即可求出,再结合为线段的中点,即可求出到的距离【详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,所以在中,所以,所以,在中,所以,所以,所以 解得,因为,所以为线段的中点,所以F到l的距离为故选:D【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题12D【解析】取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.【详解】取,数列恒单调递增,且不存在最大值,故排除

13、AB选项;由蛛网图可知,存在两个不动点,且,因为当时,数列单调递增,则;当时,数列单调递减,则;所以要使,只需要,故,化简得且.故选:D【点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题二、填空题:本题共4小题,每小题5分,共20分。13【解析】由虚数单位的性质结合复数相等的条件列式求得,的值,则答案可求【详解】解:由,所以,得,故答案为:【点睛】本题考查复数代数形式的乘除运算,考查虚数单位的性质,属于基础题14【解析】双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率【详解】解:双曲线的左右焦点分别关于两条渐近线的对称点重合,一条

14、渐近线的斜率为1,即,故答案为:【点睛】本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题15【解析】根据正弦定理得,根据余弦定理得2PF1PF2cosF1PF23,联立方程得到,计算得到答案.【详解】PF1F2中,sinPF1F2,sinPF1F2,由正弦定理得,又,tanPF2F12,tanF1PF2tan(PF2F1+PF1F2),可得cosF1PF2,PF1F2中用余弦定理,得2PF1PF2cosF1PF23,联解,得,可得,双曲线的,结合,得离心率.故答案为:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和转化能力.16【解析】由题意,可

15、得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为;两个半球的半径都为1,则两个半球的体积为;则所求几何体的体积为.考点:旋转体的组合体.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17详见解析【解析】选择,利用正弦定理求得,利用余弦定理求得,再计算边上的高.选择,利用正弦定理得出,由余弦定理求出,再求边上的高.选择,利用余弦定理列方程求出,再计算边上的高.【详解】选择,在中,由正弦定理得,即,解得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择,在中,由正弦定理得,又因为,所以,即;由余弦定理得,即,化简得,解得或(舍

16、去);所以边上的高为.选择,在中,由,得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.【点睛】本小题主要考查真闲的了、余弦定理解三角形,属于中档题.18(1)证明见解析(2)【解析】(1)设出直线的方程,与椭圆方程联立,利用根与系数的关系求出点的横坐标即可证出;(2)根据线段的垂直平分线求出点的坐标,即可求出的面积,再表示出的面积,由与的面积相等列式,即可解出直线的斜率【详解】(1)由题意,得,直线() 设, 联立消去,得,显然,则点的横坐标, 因为,所以点在轴的右侧 (2)由(1)得点的纵坐标 即 所以线段的垂直平分线方程为: 令,得;令,得 所以的面积, 的面积 因为与的面积

17、相等,所以,解得所以当与的面积相等时,直线的斜率【点睛】本题主要考查直线与椭圆的位置关系的应用、根与系数的关系应用,以及三角形的面积的计算,意在考查学生的数学运算能力,属于中档题19(1)平均数为360,众数为330;(2)见详解;(3)甲公司:7020(元),乙公司:7281(元)【解析】(1)将图中甲公司员工A的所有数据相加,再除以总的天数10,即可求出甲公司员工A投递快递件数的平均数从中发现330出现的次数最多,故为众数;(2)由题意能求出的可能取值为340,360,370,420,440,分别求出相对应的概率,由此能求出的分布列和数学期望;(3)利用(1)(2)的结果,可估算两公司的每

18、位员工在该月所得的劳务费【详解】解:(1)由题意知甲公司员工在这10天投递的快递件数的平均数为.众数为330.(2)设乙公司员工1天的投递件数为随机变量,则当时,当时,当时,当时,当时,的分布列为204219228273291(元);(3)由(1)估计甲公司被抽取员工在该月所得的劳务费为(元)由(2)估计乙公司被抽取员工在该月所得的劳务费为(元).【点睛】本题考查频率分布表的应用,考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.20(1)1;(2)5.【解析】(1)由同角三角函数关系求得,再由两角差的正弦公式求得,最后由正弦定理构建方程,求得答案.(2)在中,由正弦定理构

19、建方程求得AB,再由任意三角形的面积公式构建方程求得BC,最后由余弦定理构建方程求得AC.【详解】(1)据题意,且,所以.所以.在中,据正弦定理可知,所以.(2)在中,据正弦定理可知,所以.因为的面积为14,所以,即,得.在中,据余弦定理可知,所以.【点睛】本题考查由正弦定理与余弦定理解三角形,还考查了由同角三角函数关系和两角差的正弦公式化简求值,属于简单题.21(1)不是,见解析(2)(3)【解析】(1)利用递推关系求出数列的通项公式,进一步验证时,是否为数列中的项,即可得答案;(2)由题意得,再对公差进行分类讨论,即可得答案;(3)由题意得数列为等差数列,设数列的公差为,再根据不等式得到公差的值,即可得答案;【详解】(1)当时,又,所以所以当时,而,所以时,不是数列中的项,故数列不是为“数列”(2)因为数列是公差为的等差数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论