2022届浙江温州市高考适应性考试数学试卷含解析_第1页
2022届浙江温州市高考适应性考试数学试卷含解析_第2页
2022届浙江温州市高考适应性考试数学试卷含解析_第3页
2022届浙江温州市高考适应性考试数学试卷含解析_第4页
2022届浙江温州市高考适应性考试数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若的内角满足,则的值为( )ABCD2等腰直角三角形BCD与等边三角形ABD中,现将沿BD折起,则当直线AD与平面

2、BCD所成角为时,直线AC与平面ABD所成角的正弦值为( ) ABCD3已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )ABCD4中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位用纵式表示,十位、千位、十万位用横式表示,则56846可用算筹表示为( )ABCD5在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,那么( )ABCD6的展开式中各项系数的和为2,则该展开式中常数项为A-40B-20C20D407蒙特卡洛算法是以概率和统计的

3、理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率( )ABCD8已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是( )ABCD19已知向量,满足,在上投影为,则的最小值为( )ABCD10已知为等腰直角三角形,为所在平面内一点,且,则( )ABCD11复数满足,则复数在复平面内所对应的点在( )A第一象限B第二象限C第三象限D第四象限12如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的垂线

4、,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数_14设,分别是定义在上的奇函数和偶函数,且,则_15已知函数,则过原点且与曲线相切的直线方程为_.16设是公差不为0的等差数列的前项和,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若函数不存在单调递减区间,求实数的取值范围;(2)若函数的两个极值点为,求的最小值.18(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,ABC120,ABA

5、EED2EF,EFAB,点G为CD中点,平面EAD平面ABCD.(1)证明:BDEG;(2)若三棱锥,求菱形ABCD的边长.19(12分)在平面直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线与曲线的普通方程,并求出直线的倾斜角;(2)记直线与轴的交点为是曲线上的动点,求点的最大距离.20(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.21(12分)已知函数.()求在点处的切线方程;()已知在上恒成立,求的值.()若方程有两个实数根,且,

6、证明:.22(10分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0

7、.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】由,得到,得出,再结合三角函数的基本关系式,即可求解.【详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.2A【解析】设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线A

8、D与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果.【详解】设E为BD中点,连接AE、CE,由题可知,所以平面,过A作于点O,连接DO,则平面,所以即为直线AD与平面BCD所成角的平面角,所以,可得,在中可得,又,即点O与点C重合,此时有平面,过C作与点F,又,所以,所以平面,从而角即为直线AC与平面ABD所成角,故选:A.【点睛】该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.3B【解析】试题分析:由题意得,所以,所求双曲线方程为考点:双曲线

9、方程.4B【解析】根据题意表示出各位上的数字所对应的算筹即可得答案【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的故选:【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题5D【解析】由得,分别算出和的值,从而得到的值.【详解】,当时,当时,故选:D.【点睛】本小题主要考查对数运算,属于基础题.6D【解析】令x=1得a=1.故原式=的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为4

10、0 ,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项=-40+80=407A【解析】计算出黑色部分的面积与总面积的比,即可得解.【详解】由,.故选:A【点睛】本题考查了面积型几何概型的概率的计算,属于基础题.8B【解析】先根据导数的几何意义写出 在 两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数 ,结合导数求出最小值,即可选出正确答案.【详解】解:当 时,则;当时,则.设 为函数图像上的两点,当 或时,不符合题意,故.则在 处的

11、切线方程为;在 处的切线方程为.由两切线重合可知 ,整理得.不妨设则 ,由 可得则当时, 的最大值为.则在 上单调递减,则.故选:B.【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出 和 的函数关系式.本题的易错点是计算.9B【解析】根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【详解】在上投影为,即 又 本题正确选项:【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最

12、小值.10D【解析】以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【详解】如图建系,则,由,易得,则.故选:D【点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.11B【解析】设,则,可得,即可得到,进而找到对应的点所在象限.【详解】设,则,所以复数在复平面内所对应的点为,在第二象限.故选:B【点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.12A【解析】设所求切线的方程为,联立,消去得出关于的方程,可得出,求出的值,进而求得切点的

13、坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【详解】设所求切线的方程为,则,联立,消去得,由,解得,方程为,解得,则点,所以,阴影部分区域的面积为,矩形的面积为,因此,所求概率为.故选:A.【点睛】本题考查定积分的计算以及几何概型,同时也涉及了二次函数的切线方程的求解,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由于直线过抛物线的焦点,因此过,分别作的准线的垂线,垂足分别为,由抛物线的定义及平行线性质可得,从而再由抛物线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率注意对称性,问题应该有两解【详解】直线过抛

14、物线的焦点,过,分别作的准线的垂线,垂足分别为,由抛物线的定义知,因为,所以因为,所以,从而设直线的倾斜角为,不妨设,如图,则,同理,则,解得,由对称性还有满足题意,综上,【点睛】本题考查抛物线的性质,考查抛物线的焦点弦问题,掌握抛物线的定义,把抛物线上点到焦点距离与它到距离联系起来是解题关键141【解析】令,结合函数的奇偶性,求得,即可求解的值,得到答案.【详解】由题意,函数分别是上的奇函数和偶函数,且,令,可得,所以.故答案为:1.【点睛】本题主要考查了函数奇偶性的应用,其中解答中熟记函数的奇偶性,合理赋值求解是解答的关键,着重考查了推理与运算能力,属于基础题.15【解析】设切点坐标为,利

15、用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程【详解】设切点坐标为,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程1618【解析】先由,可得,再结合等差数列的前项和公式求解即可.【详解】解:因为,所以,.故答案为:18.【点睛】本题考查了等差数列基本量的运算,重点考查了等差数

16、列的前项和公式,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】分析:(1)先求导,再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范围.(2)先由得到,再求得,再构造函数再利用导数求其最小值.详解:(1)由函数有意义,则 由且不存在单调递减区间,则在上恒成立, 上恒成立 (2)由知, 令,即 由有两个极值点 故为方程的两根, , ,则 由由 ,则上单调递减,即 由知综上所述,的最小值为.点睛:(1)本题主要考查利用导数求函数的单调区间和极值,考查利用导数求函数的最值,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的难点有两个

17、,其一是求出,其二是构造函数再利用导数求其最小值.18(1)详见解析;(2).【解析】(1)取中点,连,可得,结合平面EAD平面ABCD,可证平面ABCD,进而有,再由底面是菱形可得,可得,可证得平面,即可证明结论;(2)设底面边长为,由EFAB,AB2EF,求出体积,建立的方程,即可求出结论.【详解】(1)取中点,连,底面ABCD为菱形,平面EAD平面ABCD,平面平面平面,平面平面,底面ABCD为菱形,为中点,平面,平面平面,;(2)设菱形ABCD的边长为,则,所以菱形ABCD的边长为.【点睛】本题考查线线垂直的证明和椎体的体积,注意空间中垂直关系之间的相互转化,体积问题要熟练应用等体积方

18、法,属于中档题.19(1),直线的倾斜角为(2)【解析】(1)由公式消去参数得普通方程,由公式可得直角坐标方程后可得倾斜角;(2)求出直线与轴交点,用参数表示点坐标,求出,利用三角函数的性质可得最大值【详解】(1)由,消去得的普通方程是: 由,得,将代入上式,化简得直线的倾斜角为(2)在曲线上任取一点,直线与轴的交点的坐标为则当且仅当时,取最大值.【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,属于基础题求两点间距离的最值时,用参数方程设点的坐标可把问题转化为三角函数问题20(1)单调递增区间为,单调递减区间为(2)的取值范围是;对应的的值为.【解析】(1)当时,

19、求的导数可得函数的单调区间;(2)若函数有两个极值点,且,利用导函数,可得的范围,再表达,构造新函数可求的取值范围,从而可求取到最小值时所对应的的值【详解】(1)函数由条件得函数的定义域:,当时,所以:,时,当时,当,时,则函数的单调增区间为:,单调递减区间为:,;(2)由条件得:,由条件得有两根:,满足,可得:或;由,可得:,函数的对称轴为,所以:,;,可得:,则:,所以:;所以:,令,则,因为:时,所以:在,上是单调递减,在,上单调递增,因为:,(1),(1),所以,;即的取值范围是:,;,所以有,则,;所以当取到最小值时所对应的的值为;【点睛】本题主要考查利用导数研究函数的极值和单调区间

20、问题,考查利用导数求函数的最值,体现了转化的思想方法,属于难题21();();()证明见解析【解析】()根据导数的几何意义求解即可.()求导分析函数的单调性,并构造函数根据单调性分析可得只能在处取得最小值求解即可.()根据()()的结论可知,在上恒成立,再分别设 的解为、.再根据不等式的性质证明即可.【详解】()由题,故.且.故在点处的切线方程为.()设恒成立,故.设函数则,故在上单调递减且,又在上单调递增.又,即且,故只能在处取得最小值,当时,此时,且在上,单调递减.在上,单调递增.故,满足题意;当时,此时有解,且在上单调递减,与矛盾;当时,此时有解,且在上单调递减,与矛盾;故().由(),在上单调递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论