版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2024年新疆生产建设兵团中考数学试卷一、单项选择题(本大题共9小题,每小题4分,共36分)1.(4分)下列实数中,比0小的数是A. B.0.2 C. D.12.(4分)四个大小相同的正方体搭成的几何体如图所示,它的主视图是 A. B. C. D.3.(4分)下列运算正确的是A. B. C. D.4.(4分)估计的值在A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间5.某跳远队准备从甲、乙、丙、丁4名运动员中选取1名成绩优异且发挥稳定的运动员参加比赛,他们成绩的平均数和方差如下:,,,,则应选择的运动员是A.甲 B.乙 C.丙 D.丁6.如图,是的直径,是的弦,,垂足为.若,,则的长为A.1 B.2 C.3 D.4 第6题图 第9题图 7.(4分)若一次函数的函数值随的增大而增大,则的值可以是A. B. C.0 D.18.(4分)某校九年级学生去距学校的科技馆研学,一部分学生乘甲车先出发,后其余学生再乘乙车出发,结果同时到达.已知乙车的速度是甲车速度的1.2倍,设甲车的速度为,根据题意可列方程A. B. C. D.9.(4分)如图,在平面直角坐标系中,直线与双曲线交于,两点,轴于点,连接交轴于点,结合图象判断下列结论:①点与点关于原点对称;②点是的中点;③在的图象上任取点,和点,,如果,那么;④.其中正确结论的个数是A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题4分,共24分)10.(4分)若每个篮球30元,则购买个篮球需元.11.(4分)学校广播站要新招1名广播员,甲、乙两名同学经过选拔进入到复试环节,参加了口语表达、写作能力两项测试,成绩如表:项目应试者口语表达写作能力甲8090乙9080学校规定口语表达按,写作能力按计入总成绩,根据总成绩择优录取.通过计算,你认为同学将被录取.12.(4分)关于的一元二次方程有两个不相等的实数根,则的取值范围为.13.(4分)如图,在正方形中,若面积,周长,则. 第13题图 第14题图 第15题图14.(4分)如图,在中,,,.若点在直线上(不与点,重合),且,则的长为.15.(4分)如图,抛物线与轴交于点,与轴交于点,线段在抛物线的对称轴上移动(点在点下方),且.当的值最小时,点的坐标为.三、解答题(本大题共9小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.(12分)计算:(1); (2).17.(6分)解方程:.18.(6分)如图,已知平行四边形.①尺规作图:请用无刻度的直尺和圆规,作的平分线交于点;(要求:不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)②在①的条件下,求证:是等腰三角形.19.(10分)为丰富学生的校园生活,提升学生的综合素质,某校计划开设丰富多彩的社团活动.为了解全校学生对各类社团活动的喜爱情况,该校随机抽取部分学生进行问卷调查(每名学生必选且只选一类),并根据调查结果制成如下统计图(不完整)结合调查信息,回答下列问题:(1)本次共调查了名学生,喜爱“艺术类”社团活动的学生人数是;(2)若该校有1000名学生,请估计其中大约有多少名学生喜爱“阅读类”社团活动?(3)某班有2名男生和1名女生参加“体育类”社团中“追风篮球社”的选拔,2名学生被选中.请用列表法或画树状图法求选中的2名学生恰好为1名男生和1名女生的概率.20.(10分)如图,的中线,交于点,点,分别是,的中点.(1)求证:四边形是平行四边形;(2)当时,求证:是矩形.21.(10分)数学活动课上为了测量学校旗杆的高度,某小组进行了以下实践活动:(1)准备测量工具①测角仪:把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪(图,利用它可以测量仰角或俯角;②皮尺.(2)实地测量数据①将这个测角仪用手托起,拿到眼前,使视线沿着测角仪的直径刚好到达旗杆的最高点(图;②用皮尺测出所站位置到旗杆底部的距离为,眼睛到地面的距离为.(3)计算旗杆高度①根据图3中测角仪的读数,得出仰角的度数为;②根据测量数据,画出示意图4,,,求旗杆的高度(精确到;(参考数据:,,,,,③若测量者仍站在原处点),能否用三角板替代测角仪测出仰角?若能,请写出测量方法;若不能,该如何调整位置才能用三角板测出仰角,请写出测量方法.22.(12分)某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额(万元)与销售量(吨的函数解析式为:;成本(万元)与销售量(吨的函数图象是如图所示的抛物线的一部分,其中是其顶点.(1)求出成本关于销售量的函数解析式;(2)当成本最低时,销售产品所获利润是多少?(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?(注:利润销售额成本)23.(11分)如图,在中,是的直径,弦交于点,.(1)求证:;(2)若,,求的长.24.(13分)【探究】(1)已知和都是等边三角形.①如图1,当点在上时,连接.请探究,和之间的数量关系,并说明理由;②如图2,当点在线段的延长线上时,连接.请再次探究,和之间的数量关系,并说明理由.【运用】(2)如图3,等边三角形中,,点在上,.点是直线上的动点,连接,以为边在的右侧作等边三角形,连接.当为直角三角形时,请直接写出的长.
2024年新疆生产建设兵团中考数学试卷参考答案与试题解析一、单项选择题(本大题共9小题,每小题4分,共36分)1.(4分)下列实数中,比0小的数是A. B.0.2 C. D.1【分析】根据实数的相关定义进行大小比较即可.【解答】解:,比0小的数是,故选:.【点评】本题考查的是实数大小比较,熟练掌握实数的相关定义是解题的关键.2.(4分)四个大小相同的正方体搭成的几何体如图所示,它的主视图是A. B. C. D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,底层是三个小正方形,上层的中间是一个小正方形,故选:.【点评】本题考查了简单组合体的三视图.解题的关键是理解简单组合体的三视图的定义,明确从正面看得到的图形是主视图.3.(4分)下列运算正确的是A. B. C. D.【分析】分别根据合并同类项的法则,同底数幂的乘法与除法法则,幂的乘方与积的乘方法则对各选项进行逐一计算即可.【解答】解:、,原计算错误,不符合题意;、,正确,符合题意;、,原计算错误,不符合题意;、,原计算错误,不符合题意.故选:.【点评】本题考查的是合并同类项,同底数幂的乘法与除法,幂的乘方与积的乘方,熟知以上运算法则是解题的关键.4.(4分)估计的值在A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间【分析】利用逼近法进行估算即可.【解答】解:,,估计的值在2和3之间,故选:.【点评】本题考查的是估算无理数的大小,熟练掌握其估算方法是解题的关键.5.(4分)某跳远队准备从甲、乙、丙、丁4名运动员中选取1名成绩优异且发挥稳定的运动员参加比赛,他们成绩的平均数和方差如下:,,,,则应选择的运动员是A.甲 B.乙 C.丙 D.丁【分析】从平均数和方差两个角度进行分析即可.【解答】解:从平均数的角度来看,乙,丙的平均数成绩比甲,丁的平均数成绩高,成绩更优异;从方差的角度来看,甲,丙的方差成绩数值小,离散程度小,稳定性也越好;综上,从方差和平均数的两个角度来看,丙运动员的成绩不仅优异,且发挥稳定,应选丙运动员,故选:.【点评】本题考查的是方差和算术平均数,熟练掌握方差和算术平均数的相关定义和计算方法是解题的关键.6.(4分)如图,是的直径,是的弦,,垂足为.若,,则的长为A.1 B.2 C.3 D.4【分析】先根据垂径定理得出的长,再利用勾股定理求出的长即可解决问题.【解答】解:是的直径,且,.在中,,.故选:.【点评】本题主要考查了垂径定理及勾股定理,熟知垂径定理及勾股定理是解题的关键.7.(4分)若一次函数的函数值随的增大而增大,则的值可以是A. B. C.0 D.1【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得,观察选项,只有选项符合题意.故选:.【点评】本题考查了一次函数的性质,,当时,函数值随的增大而增大.8.(4分)某校九年级学生去距学校的科技馆研学,一部分学生乘甲车先出发,后其余学生再乘乙车出发,结果同时到达.已知乙车的速度是甲车速度的1.2倍,设甲车的速度为,根据题意可列方程A. B. C. D.【分析】设甲车的速度为,则乙车的速度为,根据一部分学生乘甲车先出发,后其余学生再乘乙车出发,结果同时到达.列出分式方程即可.【解答】解:设甲车的速度为,则乙车的速度为,由题意得:,即,故选:.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.(4分)如图,在平面直角坐标系中,直线与双曲线交于,两点,轴于点,连接交轴于点,结合图象判断下列结论:①点与点关于原点对称;②点是的中点;③在的图象上任取点,和点,,如果,那么;④.其中正确结论的个数是A.1 B.2 C.3 D.4【分析】根据反比例函数图象的中心对称性质及反比例函数的性质逐项分析解答即可.【解答】解:如图,作轴,垂足为,①根据反比例函数图象关于原点成中心对称图形,故选项正确;②点与点关于原点对称,,在和中,,,,轴,,,,是的中点,是的中位线,故选项正确;③在每个象限内,随的增大而减小,故选项错误;④,故正确;其中正确结论的是①②④,共3个.故选:.【点评】本题考查了一次函数与反比例函数的交点问题,交点坐标满足两个函数解析式是关键.二、填空题(本大题共6小题,每小题4分,共24分)10.(4分)若每个篮球30元,则购买个篮球需元.【分析】根据“总花费篮球单价购买个数“公式进行计算即可.【解答】解:每个篮球30元,购买个篮球需:(元,故答案为:.【点评】本题考查的是列代数式,根据题意正确列出代数式是解题的关键.11.(4分)学校广播站要新招1名广播员,甲、乙两名同学经过选拔进入到复试环节,参加了口语表达、写作能力两项测试,成绩如表:项目应试者口语表达写作能力甲8090乙9080学校规定口语表达按,写作能力按计入总成绩,根据总成绩择优录取.通过计算,你认为乙同学将被录取.【分析】根据上述题目的比重,算出甲乙同学的总成绩,再进行比较即可.【解答】解:根据题意可知,甲同学的成绩为:(分;乙同学的成绩为:(分;,乙同学将被录取,故答案为:乙.【点评】本题考查的是加权平均数,熟练掌握加权平均数的相关定义和计算方法是解题的关键.12.(4分)关于的一元二次方程有两个不相等的实数根,则的取值范围为.【分析】根据当△时,方程有两个不相等的两个实数根可得△,再解即可.【解答】解:由题意得:△,解得:,故答案为:.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程的根与△有如下关系:①当△时,方程有两个不相等的两个实数根;②当△时,方程有两个相等的两个实数根;③当△时,方程无实数根.13.(4分)如图,在正方形中,若面积,周长,则40.【分析】设正方形的边长为,正方形的边长为,根据面积,周长,列出二元二次方程组,即可解决问题.【解答】解:设正方形的边长为,正方形的边长为,则,,由题意得:,由②得:③,③②得:,整理得:,即,故答案为:40.【点评】本题考查了二元二次方程组的应用以及正方形的性质,找准等量关系,正确列出二元二次方程组是解题的关键.14.(4分)如图,在中,,,.若点在直线上(不与点,重合),且,则的长为6或12.【分析】根据题意画出示意图,结合所画图形即可解决问题.【解答】解:在中,,,.当点在点左上方时,如图所示,,,.又,,,.当点在点的右下方时,如图所示,,,.在中,,.综上所述,的长为6或12.故答案为:6或12.【点评】本题主要考查了含30度角的直角三角形及勾股定理,熟知特殊角的三角函数值及对点的位置进行正确的分类讨论是解题的关键.15.(4分)如图,抛物线与轴交于点,与轴交于点,线段在抛物线的对称轴上移动(点在点下方),且.当的值最小时,点的坐标为.【分析】作点关于对称轴的对称点,向下平移3个单位,得到,连接,交对称轴于点,此时,的值最小,利用解析式求得、点的坐标,根据抛物线的对称性求得的坐标,进一步求得的坐标,利用待定系数法求得直线的解析式,即可求得点的坐标.【解答】解:作点关于对称轴的对称点,向下平移3个单位,得到,连接,交对称轴于点,此时的值最小,,在中,令,则,点,令,则,解得或,点,抛物线的对称轴为直线,,,设直线的解析式为,代入、的坐标得,解得,直线的解析式为,当时,,.故答案为:.【点评】本题考查了抛物线与轴的交点,二次函数的性质,二次函数图象上点的坐标特征,二次函数图象与几何变换,数形结合是解题的关键.三、解答题(本大题共9小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.(12分)计算:(1);(2).【分析】(1)先根据绝对值的性质,数的乘方及开方法则,零指数幂分别计算出各数,再根据实数的运算法则进行计算即可;(2)先把除法化为乘法,再约分即可.【解答】解:(1);(2).【点评】本题考查的是分式的混合运算,实数的运算,零指数幂,熟知运算法则是解题的关键.17.(6分)解方程:.【分析】先去括号,再移项,合并同类项即可.【解答】解:,,,.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.18.(6分)如图,已知平行四边形.①尺规作图:请用无刻度的直尺和圆规,作的平分线交于点;(要求:不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)②在①的条件下,求证:是等腰三角形.【分析】①根据角平分线的作图方法作图即可.②根据角平分线的定义可得,由平行四边形的性质可得,则,即可得,进而可得结论.【解答】①解:如图,即为所求.②证明:为的平分线,.四边形为平行四边形,,,,,是等腰三角形.【点评】本题考查作图—基本作图、角平分线的定义、等腰三角形的判定、平行四边形的性质,熟练掌握等腰三角形的判定、平行四边形的性质、角平分线的定义以及作图方法是解答本题的关键.19.(10分)为丰富学生的校园生活,提升学生的综合素质,某校计划开设丰富多彩的社团活动.为了解全校学生对各类社团活动的喜爱情况,该校随机抽取部分学生进行问卷调查(每名学生必选且只选一类),并根据调查结果制成如下统计图(不完整)结合调查信息,回答下列问题:(1)本次共调查了100名学生,喜爱“艺术类”社团活动的学生人数是;(2)若该校有1000名学生,请估计其中大约有多少名学生喜爱“阅读类”社团活动?(3)某班有2名男生和1名女生参加“体育类”社团中“追风篮球社”的选拔,2名学生被选中.请用列表法或画树状图法求选中的2名学生恰好为1名男生和1名女生的概率.【分析】(1)用条形统计图中“体育类”的人数除以扇形统计图中“体育类”的百分比可得本次共调查的学生人数;用本次共调查的学生人数乘以扇形统计图中“艺术类”的百分比可得喜爱“艺术类”社团活动的学生人数.(2)根据用样本估计总体,用1000乘以样本中“阅读类”的学生人数所占的百分比,即可得出答案.(3)列表可得出所有等可能的结果数以及选中的2名学生恰好为1名男生和1名女生的结果数,再利用概率公式可得出答案.【解答】解:(1)本次共调查了(名学生.喜爱“艺术类”社团活动的学生人数是(人.故答案为:100;25人.(2)(名.估计其中大约有150名学生喜爱“阅读类”社团活动.(3)列表如下:男男女男(男,男)(男,女)男(男,男)(男,女)女(女,男)(女,男)共有6种等可能的结果,其中选中的2名学生恰好为1名男生和1名女生的结果有4种,选中的2名学生恰好为1名男生和1名女生的概率为.【点评】本题考查列表法与树状图法、条形统计图、扇形统计图、用样本估计总体,能够读懂统计图,掌握列表法与树状图法以及用样本估计总体是解答本题的关键.20.(10分)如图,的中线,交于点,点,分别是,的中点.(1)求证:四边形是平行四边形;(2)当时,求证:是矩形.【分析】(1)利用三角形的中位线定理可得出与平行且相等,据此可解决问题.(2)由可得出,再根据矩形的判定即可解决问题.【解答】(1)证明:和是的中线,点和点分别为和的中点,是的中位线,,.同理可得,,,,,四边形是平行四边形.(2)证明:的中线,交于点,点是的重心,,.又点,分别是,的中点,,,.,.又四边形是平行四边形,平行四边形是矩形.【点评】本题主要考查了三角形的重心、三角形中位线定理、平行四边形的判定与性质及矩形的判定,熟知三角形中位线定理、平行四边形的判定与性质及矩形的判定是解题的关键.21.(10分)数学活动课上为了测量学校旗杆的高度,某小组进行了以下实践活动:(1)准备测量工具①测角仪:把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪(图,利用它可以测量仰角或俯角;②皮尺.(2)实地测量数据①将这个测角仪用手托起,拿到眼前,使视线沿着测角仪的直径刚好到达旗杆的最高点(图;②用皮尺测出所站位置到旗杆底部的距离为,眼睛到地面的距离为.(3)计算旗杆高度①根据图3中测角仪的读数,得出仰角的度数为;②根据测量数据,画出示意图4,,,求旗杆的高度(精确到;(参考数据:,,,,,③若测量者仍站在原处点),能否用三角板替代测角仪测出仰角?若能,请写出测量方法;若不能,该如何调整位置才能用三角板测出仰角,请写出测量方法.【分析】(1)根据测角仪得出度数为,所以为;(2)解直角三角形即可求出答案.(3)由三角板的度数可知没有,所以直接测量不出,根据三角板的度数为或者可知,向右走或者向左走一定距离就可用三角板测量,再利用特殊角求长度即可.【解答】(1)根据测角仪得出度数为,所以为;故答案为:;(2),,在中,,,.即旗杆的高度为.(3)三角板只有、的三角板和的三角板,而点的仰角为,三角板测不出仰角的度数;如图,作,则为等腰直角三角形,,,,,向右走,用直角三角板测量即可(答案不唯一,向左走用三角板测量也可以).【点评】本题主要考查了三角形综合和锐角三角函数的实际应用,掌握解直角三角形和三角板的特征是解题关键.22.(12分)某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额(万元)与销售量(吨的函数解析式为:;成本(万元)与销售量(吨的函数图象是如图所示的抛物线的一部分,其中是其顶点.(1)求出成本关于销售量的函数解析式;(2)当成本最低时,销售产品所获利润是多少?(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?(注:利润销售额成本)【分析】(1)依据题意,由顶点为,,可设抛物线为,又抛物线过,从而可得,进而得解;(2)依据题意,当销售量时,成本最低为,又销售量在0.4吨至3.5吨之间时,销售额(万元)与销售量(吨的函数解析式为:,进而代入计算可以判断得解;(3)依据题意,利润,再结合二次函数的性质即可判断得解.【解答】解:(1)由题意,顶点为,,可设抛物线为.又抛物线过,...(2)由题意,当销售量时,成本最低为,又销售量在0.4吨至3.5吨之间时,销售额(万元)与销售量(吨的函数解析式为:,当时,销售额为.此时利润为(万元).答:当成本最低时,销售产品所获利润是0.75万元.(3)由题意,利润.,当时,利润取最大值,最大值为7.答:当销售量是3吨时,可获得最大利润,最大利润是7万元.【点评】本题主要考查了二次函数的应用,解题时要熟练掌握
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文明单位创建工作报告
- 2025年度个人信用卡透支合同模板(全新修订)4篇
- 2025年度个人税务筹划与申报服务合同6篇
- 2025年度高端住宅个人出租服务合同样本4篇
- 2025年中国厦门外轮代理有限公司招聘笔试参考题库含答案解析
- 2025年河南东龙控股集团有限公司招聘笔试参考题库含答案解析
- 绵阳市二零二五年度长租公寓租赁管理合同4篇
- 2025年度购房合同霸王条款解析:购房者维权手册3篇
- 2025年江苏连云港市东海城投集团招聘笔试参考题库含答案解析
- 2025年版医疗废弃物无害化处置及资源化利用合同3篇
- 寺庙祈福活动方案(共6篇)
- 2025年病案编码员资格证试题库(含答案)
- 企业财务三年战略规划
- 提高脓毒性休克患者1h集束化措施落实率
- 山东省济南市天桥区2024-2025学年八年级数学上学期期中考试试题
- 主播mcn合同模板
- 2024测绘个人年终工作总结
- DB11 637-2015 房屋结构综合安全性鉴定标准
- 制造业生产流程作业指导书
- DB34∕T 4444-2023 企业信息化系统上云评估服务规范
- 福建中闽能源股份有限公司招聘笔试题库2024
评论
0/150
提交评论