2022届山东省章丘市高三第二次调研数学试卷含解析_第1页
2022届山东省章丘市高三第二次调研数学试卷含解析_第2页
2022届山东省章丘市高三第二次调研数学试卷含解析_第3页
2022届山东省章丘市高三第二次调研数学试卷含解析_第4页
2022届山东省章丘市高三第二次调研数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数,若,则的值为( )A1BCD2设命题函数在上递增,命题在中,下列为真命题的是( )A

2、BCD3一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则( )ABCD4已知非零向量、,若且,则向量在向量方向上的投影为( )ABCD5已知向量,=(1,),且在方向上的投影为,则等于( )A2B1CD06已知函数的定义域为,且,当时,.若,则函数在上的最大值为( )A4B6C3D87已知函数为奇函数,则( )AB1C2D38关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机

3、写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为( )ABCD9已知四棱锥中,平面,底面是边长为2的正方形,为的中点,则异面直线与所成角的余弦值为( )ABCD10某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )ABCD211一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为( )ABCD12为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值

4、满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是( )A乙的数据分析素养优于甲B乙的数学建模素养优于数学抽象素养C甲的六大素养整体水平优于乙D甲的六大素养中数据分析最差二、填空题:本题共4小题,每小题5分,共20分。13已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为_.14函数的极大值为_.15已知(为虚数单位),则复数_16已知平面向量与的夹角为,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在四棱柱中,底面为正方形,平

5、面(1)证明:平面;(2)若,求二面角的余弦值18(12分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.19(12分)平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,点(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积20(12分)设数列an的前n项和为Sn,且a1=1,an+1=2

6、Sn+1,数列bn满足a1=b1,点P(bn,bn+1)在x-y+2=0上,nN*. (1)求数列an,bn的通项公式;(2)设cn=bnan,求数列cn的前n项和Tn21(12分)已知,均为正项数列,其前项和分别为,且,当,时,.(1)求数列,的通项公式;(2)设,求数列的前项和.22(10分)已知矩阵,求矩阵的特征值及其相应的特征向量参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.2C【解析】命题:函数在上单调递减,即可判断出真假命题:在中,利用余弦函数

7、单调性判断出真假【详解】解:命题:函数,所以,当时,即函数在上单调递减,因此是假命题命题:在中,在上单调递减,所以,是真命题则下列命题为真命题的是故选:C【点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题3B【解析】根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.4D【解析】设非零向量与的夹角为,在等式两边平方,求出的值,进而可求得向量在向量方向上的投影为,即可得解.【详解】,由得,整理得,解得,因

8、此,向量在向量方向上的投影为.故选:D.【点睛】本题考查向量投影的计算,同时也考查利用向量的模计算向量的夹角,考查计算能力,属于基础题.5B【解析】先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.6A【解析】根据所给函数解析式满足的等量关系及指数幂运算,可得;利用定义可证明函数的单调性,由赋值法即可求得函数在上的最大值.【详解】函数的定义域为,且,则;任取,且,则,故,令,则,即,故函数在上单调递增,故,令,故,故函数在上的最大值为4.故选:A.【点睛】本题考查了指数幂的运算及化简,利

9、用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.7B【解析】根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.8D【解析】由试验结果知对01之间的均匀随机数 ,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计的值【详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角形

10、三边,则有,其面积;则有,解得故选:【点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.9B【解析】由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,为的中点,.,异面直线与所成角的余弦值为即为.故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.10B【解析】首先

11、根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.11A【解

12、析】由题意可知,随机变量的可能取值有、,计算出随机变量在不同取值下的概率,进而可求得随机变量的数学期望值.【详解】由题意可知,随机变量的可能取值有、,则,.因此,随机变量的数学期望为.故选:A.【点睛】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.12C【解析】根据题目所给图像,填写好表格,由表格数据选出正确选项.【详解】根据雷达图得到如下数据:数学抽象逻辑推理数学建模直观想象数学运算数据分析甲454545乙343354由数据可知选C.【点睛】本题考查统计问题,考查数据处理能力和应用意识.二、填空题:本题共4小题,每小题5分,共20分。13【解析】设,由椭圆和双曲线的定义得到,根据

13、是以为底边的等腰三角形,得到 ,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得 ,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即 ,因为,所以 ,因为,所以,所以,即,而,因为,所以在上递增,所以.故答案为:【点睛】本题主要考查椭圆,双曲线的定义和几何性质,还考查了运算求解的能力,属于中档题.14【解析】对函数求导,根据函数单调性,即可容易求得函数的极大值.【详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.【点睛】本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.15【解析】解:故答案为:【点睛】本题考查复

14、数代数形式的乘除运算,属于基础题.16【解析】根据已知求出,利用向量的运算律,求出即可.【详解】由可得,则,所以.故答案为:【点睛】本题考查向量的模、向量的数量积运算,考查计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)详见解析;(2).【解析】(1)连接,设,可证得四边形为平行四边形,由此得到,根据线面平行判定定理可证得结论;(2)以为原点建立空间直角坐标系,利用二面角的空间向量求法可求得结果.【详解】(1)连接,设,连接,在四棱柱中,分别为的中点,四边形为平行四边形,平面,平面,平面(2)以为原点,所在直线分别为轴建立空间直角坐标系设,四边

15、形为正方形,则,设为平面的法向量,为平面的法向量,由得:,令,则,由得:,令,则,二面角为锐二面角,二面角的余弦值为.【点睛】本题考查立体几何中线面平行关系的证明、空间向量法求解二面角的问题;关键是能够熟练掌握二面角的向量求法,易错点是求得法向量夹角余弦值后,未根据图形判断二面角为锐二面角还是钝二面角,造成余弦值符号出现错误.18(1),;(2)【解析】试题分析:(1)由消去参数,可得的普通方程,由可得的普通方程;(2)设为曲线上一点,点到曲线的圆心的距离,结合可得最值,的最大值为,从而得解.试题解析:(1)的普通方程为.曲线的极坐标方程为,曲线的普通方程为,即.(2)设为曲线上一点,则点到曲

16、线的圆心的距离 .,当时,d有最大值.又P,Q分别为曲线,曲线上动点,的最大值为.19(1)(2)【解析】(1)根据题意代入公式化简即可得到.(2)联立极坐标方程通过极坐标的几何意义求解,再求点到直线的距离即可算出三角形面积.【详解】解:(1)曲线,即曲线的极坐标方程为直线的极坐标方程为,即,直线的直角坐标方程为(2)设,解得又,(舍去)点到直线的距离为,的面积为【点睛】此题考查参数方程,极坐标,直角坐标之间相互转化,注意参数方程只能先转化为直角坐标再转化为极坐标,属于较易题目.20(1)an=3n-1,bn=1+(n-1)2=2n-1(2)Tn=3-123n-2-2n-123n-1=3-n+

17、13n-1.【解析】(1)利用an与Sn的递推关系可以an的通项公式;P点代入直线方程得bn+1-bn=2,可知数列bn是等差数列,用公式求解即可.(2)用错位相减法求数列的和.【详解】(1)由an+1=2Sn+1可得an=2Sn-1+1(n2),两式相减得an+1-an=2an,an+1=3an(n2)又a2=2S1+1=3,所以a2=3a1故an是首项为1,公比为3的等比数列所以an=3n-1由点P(bn,bn+1)在直线x-y+2=0上,所以bn+1-bn=2则数列bn是首项为1,公差为2的等差数列则bn=1+(n-1)2=2n-1(2)因为cn=bnan=2n-13n-1,所以Tn=1

18、30+331+532+2n-13n-1则13Tn=131+332+533+2n-33n-1+2n-13n,两式相减得:23Tn=1+23+232+23n-1-2n-13n所以Tn=3-123n-2-2n-123n-1=3-n+13n-1【点睛】用递推关系an=Sn-Sn-1(n2)求通项公式时注意n的取值范围,所求结果要注意检验n=1的情况;由一个等差数列和一个等比数列的积组成的数列求和,常用错位相减法求解.21(1),(2)【解析】(1),所,两式相减,即可得到数列递推关系求解通项公式,由,整理得,得到,即可求解通项公式;(2)由(1)可知,即可求得数列的前项和.【详解】(1)因为,所,两式相减,整理得,当时,解得,所以数列是首项和公比均为的等比数列,即,因为,整理得,又因为,所以,所以,即,因为,所以数列是以首项和公差均为1的等差数列,所以;(2)由(1)可知,即.【点睛】此题考查求数列的通项公式,以及数列求和,关键在于对题中所给

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论