版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1年某省将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学
2、选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为ABCD2给出个数 ,其规律是:第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和现已给出了该问题算法的程序框图如图,请在图中判断框中的处和执行框中的处填上合适的语句,使之能完成该题算法功能( )A;B;C;D;3已知双曲线:,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为( )ABCD4已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为( )ABCD5已知数列 中
3、, ,若对于任意的,不等式恒成立,则实数的取值范围为( )ABCD6若不等式对于一切恒成立,则的最小值是 ( )A0BCD7己知,则( )ABCD8设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面9已知圆M:x2+y2-2ay=0a0截直线x+y=0所得线段的长度是22,则圆M与圆N:x-12+y-12=1的位置关系是( )A内切B相交C外切D相离10已知函数,若对任意的总有恒成立,记的最小值为,则最大值为( )A1BCD11设、分别是定义在上的奇函数和偶函数,且,则( )AB0C1D312已知双曲线与双曲线没有公共点,则双曲线
4、的离心率的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为_.14已知集合,则_.15为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛每两班之间只比赛1场,目前()班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场则目前(五)班已经参加比赛的场次为_16定义在上的奇函数满足,并且当时,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)
5、设函数(其中),且函数在处的切线与直线平行.(1)求的值;(2)若函数,求证:恒成立.18(12分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角CAD60(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为APB,DPC,问点P在何处时,+最小?19(12分)某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.(1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最
6、小值.(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.20(12分)随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击某杂志社近9年来的纸质广告收入如下表所示: 根据
7、这9年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.243;根据后5年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.984.(1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?附:相关性检验的临界值表:(2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,现用此统计结果作为概率,若从上述读者中随机调查了3位,
8、求购买电子书人数多于只购买纸质版本人数的概率21(12分)若,且(1)求的最小值;(2)是否存在,使得?并说明理由.22(10分)设函数,直线与函数图象相邻两交点的距离为.()求的值;()在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B2A【解析】要计算这个数的和,
9、这就需要循环50次,这样可以确定判断语句,根据累加最的变化规律可以确定语句.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句应为,第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,这样可以确定语句为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.3D【解析】由|AF2|3|BF2|,可得.设直线l的方程xmy+,m0,设,即y13y2,联立直线l与曲线C,得y1+y2-,y1y2,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程xmy+,m0,双曲线的渐近线方程为x2y
10、,m2,设A(x1,y1),B(x2,y2),且y10,由|AF2|3|BF2|,y13y2由,得(2m)24(m24)0,即m2+40恒成立,y1+y2,y1y2,联立得,联立得,即:,解得:,直线的斜率为,故选D【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题4B【解析】设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,因此,双曲线的离心率为.故选:B.【点睛】本题考查双曲线离心率的计算,解答的关键
11、就是得出、的等量关系,考查计算能力,属于中等题.5B【解析】先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由题,即 由累加法可得: 即对于任意的,不等式恒成立即 令 可得且即 可得或故选B【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.6C【解析】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论解:不等式x2+ax+10对一切x(0,成立,等价于a-x-对于一切成立,y=-x-在区
12、间上是增函数a-a的最小值为-故答案为C考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题7B【解析】先将三个数通过指数,对数运算变形,再判断.【详解】因为,所以,故选:B.【点睛】本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题.8B【解析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条
13、相交直线都与平行是的必要条件,故选B【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误9B【解析】化简圆M:x2+(y-a)2=a2M(0,a),r1=aM到直线x+y=0的距离d=a2 (a2)2+2=a2a=2M(0,2),r1=2,又N(1,1),r2=1|MN|=2|r1-r2|MN| |r1+r2|两圆相交. 选B10C【解析】对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案.【详解】对任意的总有恒成立,对恒成立,令,可得令,得当,当,故令,得 当时,当,当时,故选:C.【点睛】本题主要考查了根
14、据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.11C【解析】先根据奇偶性,求出的解析式,令,即可求出。【详解】因为、分别是定义在上的奇函数和偶函数,用替换,得 ,化简得,即令,所以,故选C。【点睛】本题主要考查函数性质奇偶性的应用。12C【解析】先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于
15、基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【详解】是抛物线准线上的一点 抛物线方程为 ,准线方程为过作准线的垂线,垂足为,则 设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得: 或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲
16、线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.14【解析】利用交集定义直接求解【详解】解:集合奇数,偶数,故答案为:【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,属于基础题152【解析】根据比赛场次,分析,画出图象,计算结果.【详解】画图所示,可知目前(五)班已经赛了2场故答案为:2【点睛】本题考查推理,计数原理的图形表示,意在考查数形结合分析问题的能力,属于基础题型.16【解析】根据所给表达式,结合奇函数性质,即可确定函数对称轴及周期性,进而由的解析式求得的值.【详解】满足,由函数对称性可知关于对称,且令,代
17、入可得,由奇函数性质可知,所以令,代入可得,所以是以4为周期的周期函数,则当时,所以,所以,故答案为:.【点睛】本题考查了函数奇偶性与对称性的综合应用,周期函数的判断及应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)证明见解析【解析】(1)求导得到,解得答案.(2)变形得到,令函数,求导得到函数单调区间得到,得到证明.【详解】(1),解得.(2)得,变形得,令函数,令解得,当时,时.函数在上单调递增,在上单调递减,而函数在区间上单调递增,即,即,恒成立.【点睛】本题考查了根据切线求参数,证明不等式,意在考查学生的计算能力和转化能力,综合应用能力.
18、18(1);(2)当BP为cm时,+取得最小值【解析】(1)作AECD,垂足为E,则CE10,DE10,设BCx,根据得到,解得答案.(2)设BPt,则,故,设,求导得到函数单调性,得到最值.【详解】(1)作AECD,垂足为E,则CE10,DE10,设BCx,则,化简得,解之得,或(舍),(2)设BPt,则,设,令f(t)0,因为,得,当时,f(t)0,f(t)是减函数;当时,f(t)0,f(t)是增函数,所以,当时,f(t)取得最小值,即tan(+)取得最小值,因为恒成立,所以f(t)0,所以tan(+)0,因为ytanx在上是增函数,所以当时,+取得最小值【点睛】本题考查了三角恒等变换,利
19、用导数求最值,意在考查学生的计算能力和应用能力.19 (1) (2) 生产线上挽回的损失较多. 见解析【解析】(1)由题意得到关于的不等式,求解不等式得到的取值范围即可确定其最小值;(2).由题意利用二项分布的期望公式和数学期望的性质给出结论即可;.由题意首先确定X可能的取值,然后求得相应的概率值可得分布列,最后由分布列可得利润的期望值.【详解】(1)设从,生产线上各抽检一件产品,至少有一件合格为事件,设从,生产线上抽到合格品分别为事件,则,互为独立事件由已知有,则解得,则的最小值(2)由(1)知,生产线的合格率分别为和,即不合格率分别为和.设从,生产线上各抽检件产品,抽到不合格产品件数分别为
20、,则有,所以,生产线上挽回损失的平均数分别为:,所以生产线上挽回的损失较多.由已知得的可能取值为,用样本估计总体,则有,所以的分布列为所以(元)故估算估算该厂产量件时利润的期望值为(元)【点睛】本题主要考查概率公式的应用,二项分布的性质与方差的求解,离散型随机变量及其分布列的求解等知识,意在考查学生的转化能力和计算求解能力.20(1)选取方案二更合适;(2)【解析】(1) 可以预见,2019年的纸质广告收入会接着下跌,前四年的增长趋势已经不能作为预测后续数据的依据,而后5年的数据得到的相关系数的绝对值,所以有的把握认为与具有线性相关关系,从而可得结论;(2)求得购买电子书的概率为,只购买纸质书的概率为,购买电子书人数多于只购买纸质书人数有两种情况:3人购买电子书,2人购买电子书一人只购买纸质书,由此能求出购买电子书人数多于只购买纸质版本人数的概率.【详解】(1)选取方案二更合适,理由如下:题中介绍了,随着电子阅读的普及,传统纸媒受到了强烈的冲击,从表格中的数据中可以看出从2014年开始,广告收入呈现逐年下降的趋势,可以预见,2019年的纸质广告收入会接着下跌,前四年的增长趋势已经不能作为预测后续数据的依据. 相关系数越接近1,线性相关性越强,因为根据9年的数据得到的相关系数的绝对值,我们没有理由认为与具有线性相关关系;而后5年的数据得到的相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省劳动协议样式
- 2024版数据采集服务合同范本
- 购销合同范本汇编
- 证券交易委托协议书范例
- 土地转让合同协议书示范文本
- 供货合同补充协议案例
- 宾馆转让协议范本
- 招投标项目合作合同
- 上海市超市熟食产品流通安全协议
- 集团短信服务合同样本
- 成立分公司计划书
- 化肥农药减量增效问卷调查表
- 消防系统停水应急预案范本
- 过敏性结膜炎课件
- XX学校推广应用“国家中小学智慧教育平台”工作实施方案
- 2023年贵州黔东南州直事业单位遴选工作人员42人笔试参考题库(共500题)答案详解版
- 初三九年级英语英语英语语法填空附答案附解析
- 2022年广西建筑工程质量检测中心限公司第一批次人才招聘(79人)上岸笔试历年难、易错点考题附带参考答案与详解
- 书屋业务管理及管理知识培训
- 儿科肺炎喘嗽护理查房
- GB/T 16739.1-2023汽车维修业经营业务条件第1部分:汽车整车维修企业
评论
0/150
提交评论