




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1已知是过抛物线焦点的弦,是原点,则( )A2B4C3D32已知向量,若,则( )ABCD3公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米.所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为( )A米B米C米D米4设全集,集合,则( )ABCD5已知,若,则正数可以为( )A4B23C8D176已知等差数列中,若,则
3、此数列中一定为0的是( )ABCD7已知复数满足:,则的共轭复数为( )ABCD8已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是( )ABCD9已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( )ABCD10已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为ABCD11在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,则,由棣莫弗定理可以导出复数乘方公式:,已知,则( )AB4CD1612从集合中随机选取一个数记为,从集合中随机选取一个数记
4、为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知集合U1,3,5,9,A1,3,9,B1,9,则U(AB)_.14曲线在处的切线的斜率为_.15已知函数 函数 ,其中,若函数 恰有4个零点,则的取值范围是_16已知是定义在上的偶函数,其导函数为若时,则不等式的解集是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的
5、开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.18(12分)如图,四棱锥中,底面是边长为的菱形,点分别是的中点(1)求证:平面;(2)若,求直线与平面所成角的正弦值19(12分)随着互联网金融的不断发展,很多互联网公司推出余
6、额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用
7、分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.20(12分)设数列是等比数列,已知, (1)求数列的首项和公比;(2)求数列的通项公式21(12分)如图,在四棱锥中,底面是直角梯形,是正三角形,是的中点.(1)证明:;(2)求直线与平面所成角的正弦值.22(10分)新型冠状病毒肺炎疫情发生以来,电子购物平台成为人们的热门选择.为提高市场销售业绩,某公司设计了一套产
8、品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采用促销”和“没有采用促销”的营销网点各选取了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”.(1)请你根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采用促销活动有关”;采用促销没有采用促销合计精英店非精英店合计5050100(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价 (单位:元)和日销量 (单位:件) 的一组数据后决定选择 作为回归模型进行拟合.具体
9、数据如下表,表中的 :根据上表数据计算的值;已知该公司成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.附:附:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】设,设:,联立方程得到,计算得到答案.【详解】设,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.【点睛】本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键 .2A【解析】利用平面向量平行的坐标条件得到参数x的值.【详解】由题
10、意得,解得.故选A.【点睛】本题考查向量平行定理,考查向量的坐标运算,属于基础题.3D【解析】根据题意,是一个等比数列模型,设,由,解得,再求和.【详解】根据题意,这是一个等比数列模型,设,所以,解得,所以 .故选:D【点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.4A【解析】先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.5C【解析】首先根据对数函数的性质求出的取值范围,再代入验证即可;【详解】解:,当时,满足,实数可以为8.故选:C【点睛】本题考查对数函数的
11、性质的应用,属于基础题.6A【解析】将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.7B【解析】转化,为,利用复数的除法化简,即得解【详解】复数满足:所以 故选:B【点睛】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.8C【解析】先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考
12、查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.9D【解析】由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.10D【解析】如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,.在和中,由余弦定理得,整理解得.故选D11D【解析】根据复数乘方公式:,直接求解即可.【详解】, .故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.12
13、A【解析】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。135【解析】易得ABA1,3,9,则U(AB)514【解析】求出函数的导数,利用导数的几何意义令,即可求出切线斜率.【详解】,即曲线在处的切线的斜率.故答案为:【点睛】本题考查了导数的几何意义、导数的运算法则以及基本初等函数的导数,属于基础题.15
14、【解析】, ,函数y=f(x)g(x)恰好有四个零点,方程f(x)g(x)=0有四个解,即f(x)+f(2x)b=0有四个解,即函数y=f(x)+f(2x)与y=b的图象有四个交点, ,作函数y=f(x)+f(2x)与y=b的图象如下, ,结合图象可知, b2,故答案为.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a)的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围16【解析】构造,先
15、利用定义判断的奇偶性,再利用导数判断其单调性,转化为,结合奇偶性,单调性求解不等式即可.【详解】令,则是上的偶函数,则在上递减,于是在上递增由得,即,于是,则,解得故答案为:【点睛】本题考查了利用函数的奇偶性、单调性解不等式,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)从而的分布列为012;(3).【解析】(1)运用概率的计算公式求概率分布,再运用数学期望公式进行求解;(2)借助题设条件运用贝努力公式进行分析求解:(1)记所选取额两家商家加入团购网站的数量相等为事件,则,所以他们加入团购网站的数量不相
16、等的概率为.(2)由题,知的可能取值分别为0,1,2,从而的分布列为012.(3)所调查的50家商家中加入了两个团购网站的商家有25家,将频率视为概率,则从市中任取一家加入团购网站的商家,他同时加入了两个团购网站的概率为,所以,所以事件“”的概率为.18(1)见解析;(2).【解析】(1)取的中点,连接,通过证明,即可证得;(2)建立空间直角坐标系,利用向量的坐标表示即可得解.【详解】(1)证明:取的中点,连接是的中点,又,四边形是平行四边形,又平面平面,平面(2),同理可得:,又平面连接,设,则,建立空间直角坐标系 设平面的法向量为,则,则,取直线与平面所成角的正弦值为【点睛】此题考查证明线
17、面平行,求线面角的大小,关键在于熟练掌握线面平行的证明方法,法向量法求线面角的基本方法,根据公式准确计算.19(1);(2)680元.【解析】(1)根据题意,列方程,然后求解即可(2)根据题意,计算出10000元使用“余额宝”的利息为(元)和10000元使用“财富通”的利息为(元),得到所有可能的取值为560(元),700(元),840(元),然后根据所有可能的取值,计算出相应的概率,并列出的分布列表,然后求解数学期望即可【详解】(1)据题意,得,所以.(2)据,得这被抽取的7人中使用“余额宝”的有4人,使用“财富通”的有3人.10000元使用“余额宝”的利息为(元).10000元使用“财富通
18、”的利息为(元).所有可能的取值为560(元),700(元),840(元).,.的分布列为560700840所以(元).【点睛】本题考查频数分布表以及分布列和数学期望问题,属于基础题20 (1)(2)【解析】本题主要考查了等比数列的通项公式的求解,数列求和的错位相减求和是数列求和中的重点与难点,要注意掌握(1)设等比数列an的公比为q,则q+q2=6,解方程可求q(2)由(1)可求an=a1qn-1=2n-1,结合数列的特点,考虑利用错位相减可求数列的和解:(1)(2), 两式相减:21(1)见证明;(2)【解析】(1)设是的中点,连接、,先证明是平行四边形,再证明平面,即(2)以为坐标原点,的方向为轴的正方向,建空间直角坐标系,分别计算各个点坐标,计算平面法向量,利用向量的夹角公式得到直线与平面所成角的正弦值.【详解】(1)证明:设是的中点,连接、,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门市租赁合同范本
- 转入学生试读协议书范本
- 基金战略合作协议书范本
- 品牌产品推广宣传战略合作框架合同范本
- 2025年度施工安全责任协议模板含责任追究
- 桥梁施工中的钻孔灌注桩常见问题及预防措施
- 金融机构风险评估与投资决策流程
- 电力设施安全巡检培训计划
- 测绘工程实习项目总结范文
- 交通枢纽自用部位断水、断电应急预案
- 建设工程招标代理合同(GF-2005-0215)(标准版)
- 剪映专业版教学课件
- 公司新建电源及大用户并网管理办法
- 《hpv与宫颈癌》课件
- 2024年世界职业院校技能大赛“智能网联汽车技术组”参考试题库(含答案)
- 2024中华人民共和国文物保护法详细解读课件
- SAP导出科目余额表和凭证表操作说明及截图可编辑范本
- 《建筑设计基础》全套教学课件
- 仓库货物安全管理
- 新人教版历史七下《统一多民族国家的巩固和发展》教案
- 烟气排放连续监测系统CEMS培训
评论
0/150
提交评论