版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、考研数学线代知识点的复习指导考研数学线代知识点的复习指南线性代数总共分为六章。第一章行列式本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算.另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理其他问题需要计算行列式,题目难度不是很大。主要方法是利用行列式的性质或者展开定理即可。而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进行变形、利用相似关系。06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15、
2、16年的数一、三的填空题考查的是一个n行列式的计算,。今年数一、数二、数三这块都没有涉及。第二章矩阵本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的则是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题则用到了矩阵的秩的相关性质。14的第一道大题的第二问延续了13年第一道大题的思路
3、,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。16年只有数二了矩阵等价的判断确定参数。第三章向量本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。复习的时候要注意结构和从不同角度理解。做题重心要放在问题转换上面。出题方式主要以选择与大题为主。这一章无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是向量组的线性表出就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题,13年考查的则是向量组的等价,14年的选择题则考查了向量组的线性无关性。15年数一第2
4、0题结合向量空间的基问题考查了向量组等价的问题。16年数数一、数三第21题与数二23题考的同样的题,第二问考向量组的线性表示的问题。今年17年第四章线性方程组主要考点有两个:一是解的判定与解的结构、二是求解方程。考察的方式还是比较固定,直接给方程讨论解的情况、解方程或者通过其他的关系转化为线性方程组、矩阵方程的形式来考。06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题,13年考查的第一道大题考查的形式不是很明显,但也是线性方程组求解的问题。14年的第一道大题就是线性方程组的问题,15年选择题考查了解的判定,数二、数三同一个大题里面考查了矩阵方程的问题。16年数
5、一第20题矩阵方程解的判断和求解,数三第20题与数二第22题直接考线性方程解的判断和求解,数一第21题第二问解矩阵方程。16年数一、数三第21题与数二第23题第二问直接考矩阵方程解求解,基本都不需要大家做转换。今年数一、数三第20题、数二第22题第二问题都考了抽象的线性方程的求解问题。第五章矩阵矩阵的特征值与特征向量,每年大题都会涉及这章的内容。考大题的时候较多。重点考查三个方面,一是特征值与特征向量的定义、性质以及求法;二是矩阵的相似对角化问题,三是实对称矩阵的性质以及正交相似对角化的问题。要的实对称矩阵的性质与正交相似对角化问题可以说每年必考,09、10、11、12、13年都考了。14考查
6、的则是矩阵的相似对角化问题,是以证明题的形式考查的。15年数一、数二、数三选择题结合二次型正交化特点然后结合特征值定义考查;大题也是有一个题目相同,都是矩阵相似,然后对角化问题。16年数一数三第21题与数二第23题的第一问以考高次幂的形式出现,实质就是矩阵相似对角化问题。今年数一、数三第5、6、20、题与数二第7、8、14、22、14题都考相似、相似对角的判断性质。今年在这章涉及的分数高达20多分。第六章二次型本章是第五章的运用,有两个重点:一是化二次型为标准形;二是正定二次型。前一个重点主要考查大题,有两种处理方法:配方法与正交变换法,而正交变换法是考查的重中之重。10、11、12年均以大题
7、的形式出现,考查的是利用正交变换化二次型为标准形,而13年的最后一道大题考查的也是二次型的题目,但它考查的则是二次型的矩阵表示,另外也考到二次型的标准形,它是通过间接的方式求得特征值然后直接得出标准形的。后一考点正定二次型则以小题为主。14则是以填空题的形式出现的,考查的题目为已知二次型的负惯性指数为1,让求参数的取值范围。15年结合对角化考了个选择题。16年数一结合空间解析几何考了二次型的标准型,数三、数二正负惯性指数考察。今年数一、数三第21题与数二第3题考察的就是二次型正交对角化问题。综合所述,线代每年的考题都比较固定,大题基本上在线性方程和特征值的角度出。所以建议18的同学在复习线代的
8、时候从以下几个方面去把握:一、把线代基本的概念弄清楚,线代的概念要从定义的角度和形式上面去把握;二、线代的记号要清楚,而且能够写成对应的形式去表示;三、重视线代里面知识点的不同角度的转换关系,比如秩与解关系、行列式与秩关系等;四、前期要把线代里面固定题型的方法弄透,比如齐次方程的基础解系是怎么求的、矩阵秩怎么求等。考研数学知识点模块如何归纳总结高等数学分为5大知识模块:1、一元微积分学;2、多元微积分学;3、曲线、曲面积分;4、无穷级数;5、微分方程。这里面的曲线、曲面积分是数一的同学特有的,其他内容是所有考数学的同学都要考查的。线性代数分为3大知识模块:1、行列式和矩阵;2、向量和线性方程组
9、;3、特征值、特征向量和二次型。线性代数部分从考纲来看各个卷种的差别不大,近些年的变化也不大,是考研数学相对稳定的一部分考查内容。概率论与数理统计分为3大知识模块:1、概率、概率基本性质及简单的概型,2、随机变量及其分布与数字特征,3、统计基本概念、参数估计及假设检验,这部分是数二的同学不要求的,而数一和数三大纲的要求还是有些差距的,比如数一要求假设检验而数三不要求。建议大家可以按下面提供的方法进行四个不同层次的归纳总结:第一个层次是概念、性质、公式、定理及相关知识之间的联系、区别的归纳与总结。我们的方法是:首先按照自己认为的重要到次重要的顺序进行回忆,之后比照考试大纲所规定的考试内容,看自己
10、有哪些遗漏了,从而形成完整的知识网络。我们还要对遗漏的知识点进行分析,要搞清楚这个知识点是由于和这个小的知识模块关系不紧密而没有联系起来,还是自己在复习过程中忽略了。对于前一种情况大家不用放在心上,只要看一看这个知识点说的是什么意思就可以了,比如:在我们回忆一元微积分学时,如果没想起来曲率的概念,这关系不是很大,要知道和整个知识模块相对游离的知识点往往不是考研的重点,我们知道即可。可是对于那些本来很重要的知识点由于自己的忽视而没有想起来,这时我们要高度的重视起来了,这些知识应该是自己的相对弱点和盲点,对这些知识点的复习是我们是否能考出好成绩的关键!对这些知识点我们要想尽一切办法去理解,去练习,
11、直到掌握了为止!在这一层次中大家要知道,考研中的重要的考点往往是不同部分的节点,这样的知识点可能联系着两个或多个的概念,是起桥梁作用的知识。第二个层次是对题型的归纳总结。做完第一个层次的总结,我们只是把考研要考的一些小的知识点形成了一个知识的网络图,但我们还不知道考研是从什么角度,如何考查大家,这时我们要进行第二个层次的总结。我们归纳总结的方法是先根据自己看过的和做过的辅导材料凭记忆总结出若干的题型,之后比照自己所看的材料看自己总结的是否能涵盖复习材料中大部分的例题,另外,大家还可以参照专门讲题型的书,用自己总结的题型和复习材料上的进行对照,通过对照充实自己总结出来的题型。第三个层次是对题型解
12、法的归纳总结。有了第二个层次的归纳总结,我们对考研数学的畏惧心理都消失了,你已经知道了考研数学可能考你的方式、方法和角度了,现在要做的是对总结的题型进行解题方法的总结了。我们的方法是首先根据自己做过的一种题型的若干例题总结出典型的解题思路形成有效的解题程序和过程。对于一种题型我们可以从不同的例题中归纳出多种的方法和思路。之后,我们对照复习材料进行充实和改造自己归纳的解题思路和方法,尽可能多的把能用的思路和方法总结出来。第四个层次是解题思路的升华。有了第三个层次的归纳总结,我们对自己遇到的题目就心中有底了,我们已经知道,一般的题目只要按照自己总结的方法一种一种的去试,基本上能把题目做出来,只不过
13、我们的解题的速度不快,这时侯我们需要在第三个层次的基础上进行思路的升华,找到最好的对付一类题型的解题方法,提高我们的解题速度!我们的方法是在自己总结的方法中找最快捷和最适合自己发挥的解题思路,之后去找些有关题型的复习材料做些比较,再看看自己的方法和这些材料的方法哪个更适合自己。考研数学:高数定理证明之微分中值定理这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。费马引理的条件有两个:1.f(x0)存在2.f(x0)为f(x)的极值,结论为f(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义
14、写出f(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数
15、为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?前面提过费马引理的条件有两个“可导”和
16、“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版个人住房贷款担保合同汇编2篇
- 二零二五年度高效节水灌溉与机耕一体化服务合同3篇
- 医疗器械2025年度信息安全与隐私保护合同3篇
- 二零二五年度车辆抵押担保担保公司服务合同范本3篇
- 基于二零二五年度的智能家居技术服务合同2篇
- 二零二五版EPS线条工程节能评估与认证合同3篇
- 二零二五版桉树种植抚育及产品回收合同3篇
- 二零二五年度特色餐厅股权置换合同协议书3篇
- 二零二五年度航空货运服务保障合同3篇
- 二零二五版锅炉安全检查与安装服务合同范本3篇
- 稽核管理培训
- 电梯曳引机生锈处理方案
- 电力电缆故障分析报告
- 中国电信网络资源管理系统介绍
- 2024年浙江首考高考选考技术试卷试题真题(答案详解)
- 《品牌形象设计》课件
- 仓库管理基础知识培训课件1
- 药品的收货与验收培训课件
- GH-T 1388-2022 脱水大蒜标准规范
- 高中英语人教版必修第一二册语境记单词清单
- 政府机关保洁服务投标方案(技术方案)
评论
0/150
提交评论