版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、试卷第 =page 5 5页,共 =sectionpages 5 5页试卷第 =page 4 4页,共 =sectionpages 5 5页高中数学北师大版(2019)必修第一册第六章统计综合强化3第I卷(选择题)请点击修改第I卷的文字说明一、单选题1已知一组数据丢失了其中一个,另外六个数据分别是10,8,8,11,16,8,若这组数据的平均数、中位数、众数依次成等差数列,则丢失数据的所有可能值的和为A12B20C25D27二、多选题2在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,A、B、C、D四地
2、新增疑似病例数据信息如下,一定符合没有发生大规模群体感染标志的是( )AA地:中位数为2,极差为5BB地:总体平均数为2,众数为2CC地:总体平均数为1,总体方差大于0DD地:总体平均数为2,总体方差为3第II卷(非选择题)请点击修改第II卷的文字说明三、填空题3在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是_平均数; 标准差; 平均数且标准差;平均数且极差小于或等于2; 众数等于1且极差小于或等于4.4在某地区
3、某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是_平均数; 标准差; 平均数且标准差;平均数且极差小于或等于2; 众数等于1且极差小于或等于4.5气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)甲地5个数据的中位数为24,众数为22;乙地5个数据的中位数为27,总体均值为24;丙地5个数据中有一个数据是32,总体均值为26,总体方差为
4、10.8.则肯定进入夏季的地区有_6为了解中学生课外阅读情况,现从某中学随机抽取名学生,收集了他们一年内的课外阅读量(单位:本)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:这名学生阅读量的平均数可能是本;这名学生阅读量的分位数在区间内;这名学生中的初中生阅读量的中位数一定在区间内;这名学生中的初中生阅读量的分位数可能在区间内.所有合理推断的序号是_.四、解答题7某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,且将全班人的成绩记为由右边的程序运行后,输出.据此解答如下问题:注:图中表示“是”,表示“否”(1)求茎叶图中破损处分数在
5、,各区间段的频数;(2)利用频率分布直方图估计该班的数学测试成绩的众数,中位数分别是多少?8随机抽取100名学生,测得他们的身高(单位:),按照区间,分组,得到样本身高的频率分布直方图如图所示(1)求频率分布直方图中的值及身高在及以上的学生人数;(2)估计该校100名生学身高的75分位数(3)若一个总体划分为两层,通过按样本量比例分配分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:,;,记总的样本平均数为,样本方差为,证明:;9冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病出现的新型冠状病毒(nCoV)是从未在人体中
6、发现的冠状病毒新毒株人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡某医院为筛查冠状病毒,需要检测血液中的指标现从采集的血液样品中抽取500份检测指标的值,由测量结果得下侧频率分布直方图:(1)求这500份血液样品指标值的平均数和样本方差 (同一组数据用该区间的中点值作代表,记作);(2)由频率分布直方图可以认为,这项指标的值X服从正态分布,其中 近似为样本平均数,近似为样本方差 在统计学中,把发生概率小于3的事件称为小概率事件(正常条件下小概率事件的发生是不正常的)该医院非常关注本院医生健康状况,随机
7、抽取20名医生,独立的检测血液中指标的值,结果发现4名医生血液中指标的值大于正常值20.03,试根据题中条件判断该院医生的健康率是否正常,并说明理由附:参考数据与公式:, ,;若 ,则; ; ,102020年春节期间,全国人民都在抗击“新型冠状病毒肺炎”的斗争中.当时武汉多家医院的医用防护物资库存不足,某医院甚至面临断货危机,南昌某生产商现有一批库存的医用防护物资,得知消息后,立即决定无偿捐赠这批医用防护物资,需要用A、B两辆汽车把物资从南昌紧急运至武汉.已知从南昌到武汉有两条合适路线选择,且选择两条路线所用的时间互不影响.据调查统计2000辆汽车,通过这两条路线从南昌到武汉所用时间的频数分布
8、表如下:所用的时间(单位:小时)路线1的频数200400200200路线2的频数100400400100假设汽车A只能在约定交货时间的前5小时出发,汽车B只能在约定交货时间的前6小时出发(将频率视为概率).为最大可能在约定时间送达这批物资,来确定这两车的路线.(1)汽车A和汽车B应如何选择各自的路线.(2)若路线1、路线2的“一次性费用”分别为3.2万元、1.6万元,且每车医用物资生产成本为40万元(其他费用忽略不计),以上费用均由生产商承担,作为援助金额的一部分.根据这两辆车到达时间分别计分,具体规则如下(已知两辆车到达时间相互独立,互不影响):到达时间与约定时间的差x(单位:小时)该车得分
9、012生产商准备根据运输车得分情况给出现金排款,两车得分和为0,捐款40万元,两车得分和每增加1分,捐款增加20万元,若汽车A、B用(1)中所选的路线运输物资,记该生产商在此次援助活动中援助总额为Y(万元),求随机变量Y的期望值,(援助总额一次性费用生产成本现金捐款总额)答案第 = page 7 7页,共 = sectionpages 8 8页答案第 = page 8 8页,共 = sectionpages 8 8页参考答案1D【分析】设出未知数,根据这组数的平均数、中位数、众数依次成等差数列,列出关系式,因为所写出的结果对于的值不同所得的结果不同,所以要讨论的三种不同情况【详解】设这个数字是
10、,则平均数为,众数是,若,则中位数为,此时,若,则中位数为,此时,若,则中位数为,所有可能值为,其和为故选【点睛】本题考查众数,中位数,平均数,考查等差数列的性质,考查未知数的分类讨论,是一个综合题目,这是一个易错题目2AD【分析】逐个选项分析是否一定满足每天新增疑似病例不超过7人即可.【详解】对A,因为甲地中位数为2,极差为5,故最大值不会大于.故A正确.对B,若乙地过去10日分别为则满足总体平均数为2,众数为2,但不满足每天新增疑似病例不超过7人,故B错误.对C,若丙地过去10日分别为,则满足总体平均数为1,总体方差大于0, 但不满足每天新增疑似病例不超过7人,故C错误.对D,利用反证法,
11、若至少有一天疑似病例超过7人,则方差大于.与题设矛盾,故连续10天,每天新增疑似病例不超过7人.故D正确.故选:AD【点睛】样本估计总体中平均数、中位数体现整体水平情况、方差体现稳定性情况.3(4)(5)【详解】错,举反例:;其平均数,但不符合上述指标;错,举反例:;其标准差,但不符合上述指标;错,举反例:;其平均数且标准差,但不符合上述指标;对,若极差小于,符合上述指标; 若极差小于或等于,有可能;,在平均数的条件下,只有成立,符合上述指标;对,在众数等于且极差小于或等于,则最大数不超过,符合指标,所以选.4(4)(5)【详解】错,举反例:;其平均数,但不符合上述指标;错,举反例:;其标准差
12、,但不符合上述指标;错,举反例:;其平均数且标准差,但不符合上述指标;对,若极差小于,符合上述指标; 若极差小于或等于,有可能;,在平均数的条件下,只有成立,符合上述指标;对,在众数等于且极差小于或等于,则最大数不超过,符合指标,所以选.5【分析】根据数据的特点进行估计甲、乙、丙三地连续天的日平均气温的记录数据,分析数据的可能性进行解答即可得出答案【详解】甲地:个数据的中位数为,众数为,根据数据得出:甲地连续天的日平均温度的记录数据可能为:、,其连续天的日平均气温均不低于;乙地:个数据的中位数为,总体均值为,当个数据为、,可知其连续天的日平均温度有低于,故不确定;丙地:个数据中有一个数据是,总
13、体均值为,若有低于,假设取,此时方差就超出了,可知其连续天的日平均温度均不低于,如、,这组数据的平均值为,方差为,但是进一步扩大方差就会超过,故对则肯定进入夏季的地区有甲、丙两地,故答案为【点睛】本题考查中位数、众数、平均数、方差的数据特征,简单的合情推理,解答此题应结合题意,根据平均数的计算方法进行解答、取特殊值即可6【分析】由学生类别阅读量图表可知;计算75%分位数的位置,在区间内查人数即可;设在区间内的初中生人数为,则,分别计算为最大值和最小值时的中位数位置即可;设在区间内的初中生人数为,则,分别计算为最大值和最小值时的25%分位数位置即可.【详解】在中,由学生类别阅读量中男生和女生人均
14、阅读量知,这200名学生的平均阅读量在区间内,故错误;在中,阅读量在的人数有人,在的人数有62人,所以这200名学生阅读量的75%分位数在区间内,故正确;在中,设在区间内的初中生人数为,则,当时,初中生总人数为116人,此时区间有25人,区间有36人,所以中位数在内,当时,初中生总人数为131人,区间有人,区间有36人,所以中位数在内,当区间人数去最小和最大,中位数都在内,所以这名学生中的初中生阅读量的中位数一定在区间内,故正确;在中,设在区间内的初中生人数为,则,当时,初中生总人数为116人,此时区间有25人,区间有36人,所以25%分位数在内,当时,初中生总人数为131人,区间有人,所以2
15、5%分位数在内,所以这名学生中的初中生阅读量的25%分位数可能在区间内,故正确;故答案为:【点睛】本题主要考查频数分布表、平均数和分位数的计算,考查学生对参数的讨论以及计算能力,属于中档题.7(1)4(2)众数75,中位数73.5【解析】分析:(1)由直方图先求出在之间的频率及频数,由程序框图求出在之间的频数,用样本容量相减,可得答案;(2)计算各段的频率,进而得到频率最大的组中值即为众数,求出频率的等分线,可得中位数.详解:(1)由直方图知:在50,60)之间的频率为0.00810=0.08,在50,60)之间的频数为2;由程序框图知:在70,80)之间的频数为10所以分数在80,90)之间
16、的频数为2527102=4;(2)分数在50,60)之间的频率为2/25=0.08;分数在60,70)之间的频率为7/25=0.28;分数在70,80)之间的频率为10/25=0.40;分数在80,90)之间的频率为4/25=0.16;分数在90,100之间的频率为2/25=0.08;估计该班的测试成绩的众数75设中位数为x,则0.08+0.28+0.04(x70)=0.5,解得x=73.5点睛:该题考查的是有关统计的问题,在解题的过程中,需要明确茎叶图和直方图的意义,以及会读程序框图的结果,从中得到相关的信息,利用众数和中位数的概念求得结果.8(1)0.06 60人;(2);(3)详见解析.
17、【分析】(1)利用频率分布直方图中长方形面积之和为1,易求出,进而利用频率分布直方图可求身高在及以上的学生人数;(2)可设该校100名生学身高的75分位数,再利用频率分布直方图计算即得;(3)利用样本平均数,方差公式化简即证.【详解】(1)由频率分布直方图可知,解得,身高在及以上的学生人数(人)(2)的人数占比为,的人数占比为,所以该校100名生学身高的75分位数落在,设该校100名生学身高的75分位数为,则,解得,故该校100名生学身高的75分位数为(3)由题得;又同理,.9(1)17.4;6.92(2)该院医生的健康率是正常的见解析【分析】(1)由频率分布直方图,直接利用平均数和方差公式,
18、求出500份血液样品指标值的平均数和样本方差;(2)由(1)得出指标的值服从正态分布,从而可求出,在根据独立重复试验中的概率求法,求出20名医生中出现4名医生血液中指标的值大于正常值20.03的概率,即可判断该院医生的健康率是否正常.【详解】解:(1)根据题意,由频率分布直方图可知,500份血液样品指标值的平均数为:,500份血液样品指标值的样本方差为:(2)由题意知:指标的值服从正态分布,则,所以,随机抽取20名医生独立检测血液中指标的值,就相当于进行了20次独立重复试验,记“20名医生中出现4名医生血液中指标的值大于正常值20,03”为事件,则,所以从血液中指标的值的角度来看:该院医生的健康率是正常的【点睛】本题考查由频率分布直方图估计平均数和方差,考查对正态分布的理解和正态分布的实际应用,以及独立重复试验中的概率问题,考查理解分析和计算能力.10(1)汽车A选择路线1,汽车B选择路线2;(2)138.8.【分析】(1)由题目中的频数分布表列出频率分布表,求出汽车在约定交货时间前5(6)小时出发选择路线1、2将物资运往武汉且在约定交货时间前到达的概率,选择概率较大的路线;(2)设表示汽车A选择路线1时的得分,表示汽车B选择路线2时的得分,分别求出,的分布列,再求出的分布列,求出,即可求出.【详解】(1)频率分布表如下:所用的时间(单位:小时)路线1的频
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度教育咨询服务办学许可证转让及服务协议3篇
- 2025年临时用工合作协议确保二零二五年度客户服务品质3篇
- 2025年二零二五企业仓储物流场地租赁服务合同3篇
- 2025年度年度影视行业兼职演员聘用协议2篇
- 二零二五年度销售团队保密责任协议
- 2025年度新型城镇化工程款结算与进度管理协议3篇
- 2025年度全新竞业协议解除后一个月竞业限制合同3篇
- 二零二五年度新能源汽车购买协议3篇
- 2025年度公司与个人合作代收代付电商业务合同模板3篇
- 二零二五年度农产品电商平台用户行为分析合作协议3篇
- 2024新版《药品管理法》培训课件
- 【初中语文】2024-2025学年新统编版语文七年级上册期中专题12:议论文阅读
- 信息科技大单元教学设计之七年级第一单元探寻互联网新世界
- 四川新农村建设农房设计方案图集川西部分
- OBE教育理念驱动下的文学类课程教学创新路径探究
- 2024年国家公务员考试《行测》真题卷(行政执法)答案和解析
- 2024年首届全国标准化知识竞赛真题题库导出版-下(判断题部分)
- 一年级下数学教案-笔算两位数减两位数(退位减)-苏教版秋
- 2024-2025学年高一地理新教材必修1配套课件 第6章 第4节 地理信息技术在防灾减灾中的应用
- 电梯维护保养分包合同
- 10以内连加减口算练习题完整版139
评论
0/150
提交评论