通信原理实验报告_第1页
通信原理实验报告_第2页
通信原理实验报告_第3页
通信原理实验报告_第4页
通信原理实验报告_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、通信原理实验CPLD可编程数字信号发生器实验实验模块1、通信原理 0 号模块一块2、示波器 一台实验原理CPLD可编程模块用来产生实验系统所需要的各种时钟信号和各种数字信号。它由CPLD可编程器件ALTERA公司的EPM240T100C5、下载接口电路和一块晶振组成。晶振JZ1用来产生系统内的32.768MHz主时钟。本实验要求参加实验者了解这些信号的产生方法、工作原理以及测量方法,才可通过CPLD可编程器件的二次开发生成这些信号,理论联系实验,提高实际操作能力。1、CPLD数字信号发生器,包括以下五个部分: 时钟信号产生电路; 伪随机码产生电路; 帧同步信号产生电路; NRZ码复用电路及码选

2、信号产生电路; 终端接收解复用电路。2、24位NRZ码产生电路本单元产生NRZ信号,信号速率可根据输入时钟不同自行选择,帧结构如下图所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16路为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号。LED亮状态表示1码,熄状态表示0码。实验框图1、观测时钟信号输出波形。2、 用示波器观测帧同步信号输出波形。3、用示波器观测伪随机信号输出波形模拟信号源实验实验模块1、通信原理 0 号模块一块2、示波器 一台实验原理1.同步正弦波信号图2-1为同步正弦信号发生器的电路图。它由2KHz方波信号产生

3、器(图中省略了)、同相放大器和低通滤波器三部分组成。2KHz的方波信号由CPLD可编程器件U8内的逻辑电路通过编程产生2.非同步信号源非同步信号源利用混合信号SoC型8位单片机C8051F330,采用DDS(直接数字频率合成)技术产生。通过波形选择器S6选择输出波形,对应发光二极管亮。它可产生频率为180Hz18KHz的正弦波、180Hz10KHz的三角波和250Hz250KHz的方波信号。按键S7、S8分别可对各波形频率进行增减调整。非同步信号输出幅度为04V,通过调节W4改变输出信号幅度。可利用它定性地观察通信话路的频率特性,同时用作增量调制、脉冲编码调制实验的模拟输入信号。3.载波产生电

4、路1)功用载波产生电路用来产生数字调制所需的正弦波信号,频率有64KHz和128KHz两种。2)工作原理64K载波产生电路如图2-4所示,128K载波产生电路如图2-5所示64KHz(128KHz)的方波信号由CPLD可编程器件U8内的逻辑电路通过编程产生。“64K同步正弦波”(“64K”同步正弦波)为其测量点。U17A(U18A)及周边的电阻组成一个的同相放大电路,起到隔离和放大作用。U17D(U18D)及周边的阻容网络组成一个截止频率为64K(128KHz)的二阶低通滤波器,滤除方波信号里的高次谐波和杂波,得到正弦波信号。调节W2(W3)改变同相放大器的放大增益,从而改变输出正弦波的幅度(

5、05V)。实验结果1.用示波器测量“2K同步正弦波”输出波形、调节W1 可改变信号输出幅度。同理,观测“64K同步正弦波”、“128K同步正弦波”各点输出的波形,对应的电位器W2,W3可分别改变各正弦波的幅度。2、用示波器测量“非同步模拟信号”输出波形。1)按键S6选择为“正弦波”,改变W4,调节信号幅度(调节范围为04V),用示波器观察输出波形。2) 保持信号幅度为3V,改变S7、S8,调节信号频率(调节范围为180Hz18KHz),用示波器观察输出波形。抽样定理和PAM调制解调实验1、基本原理1)抽样定理抽样定理表明:一个频带限制在(0,)内的时间连续信号,如果以T秒的间隔对它进行等间隔抽

6、样,则将被所得到的抽样值完全确定。假定将信号和周期为T的冲激函数相乘,如图3-1所示。乘积便是均匀间隔为T秒的冲激序列,这些冲激序列的强度等于相应瞬时上的值,它表示对函数的抽样。若用表示此抽样函数,则有:2)脉冲振幅调制(PAM)所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。但是实际上真正的冲激脉冲串并不能付之实现,而通常只能采用窄脉冲串来实现。因而,研究窄脉冲作为脉冲载波的PAM方式,将具有实际意义。PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,已抽样信号ms(t)的脉冲“顶

7、部”是随m(t)变化的,即在顶部保持了m(t)变化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。实验结果1、 观测PAM自然抽样波形2、 观测恢复信号3、 观测PAM平顶抽样波形脉冲编码调制解调实验实验框图1、 观测PCM编、译码波形用示波器测量信号源板上“2K同步正弦波”点,调节信号源板上手调电位器W1使输出信号峰-峰值在3V左右。将信号源板上S4设为0111(时钟速率为256K),S5设为0100(时钟速率为2.048M)。用示波器观测PC

8、M编码输出点“PCMOUT-A”。改变位时钟为2.048M(将S4设为“0100”),观测PCM调制和解调波形。两路PCM时分复用实验时分复用的原理框图如图所示:实验结果将信号源模块上S4拨为“0100”,S5也拨为“0100”。两路PCM解复用实验解复用是通过帧同步提取模块提取的帧同步信号和位时钟提取模块控制计数器产生帧同步信号TS0、TT1和TS_SEL。然后,再通过TS0、TS1、TS_SEL将复用的信号分离开。原理框图如图21-1所示:用双踪示波器对比观察模块8上的“PCMAIN”和“PCMOUTA”,“PCMBIN”和“PCMOUTB”的波形,看是否一致。用双踪示波器对比观察模块2上

9、“SIN IN-A”和“SIN OUT-A”,“SIN IN-B”和“SIN OUT-B”的波形,看是否一致。移相键控(PSK_DPSK)调制与解调实验实验框图1、 PSK/DPSK调制实验将开关K3拨到“PSK”端,以信号输入点“PSK-NRZ”的信号为内触发源,用双踪示波器同时观察点“PSK-NRZ”与“PSK-OUT”输出的波形关闭仿真开关,不改变PSK调制实验连线。将开关K3拨到“DPSK”端,增加连线:再启动仿真,以信号输入点“PSK-NRZ”的信号为内触发源,用双踪示波器同时观察点“PSK-NRZ”与“PSK-OUT”输出的波形2、PSK/DPSK解调实验将模块7上的拨码开关S2拨

10、为“0110”,观察模块4上信号输出点“PSK-DOUT”处的波形。并调节模块4上的电位器W4(逆时针拧到最大),直到在该点观察到稳定的PN码。用示波器双踪分别观察模块3上的“PSK-NRZ”和模块4上的“OUT3”处的波形,比较二者波形眼图观测实验实验原理在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示

11、波器上显示的图形很象人的眼睛,因此被称为眼图。二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。当有码间串扰时,波形失真,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用图7.6所示的图形来描述。由此图可以看出:1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜边越陡,系统对定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论