![2022届黑龙江省大兴安岭达标名校中考数学最后冲刺浓缩精华卷含解析_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/0196dde1-4a83-4933-a3da-f6717140a3a6/0196dde1-4a83-4933-a3da-f6717140a3a61.gif)
![2022届黑龙江省大兴安岭达标名校中考数学最后冲刺浓缩精华卷含解析_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/0196dde1-4a83-4933-a3da-f6717140a3a6/0196dde1-4a83-4933-a3da-f6717140a3a62.gif)
![2022届黑龙江省大兴安岭达标名校中考数学最后冲刺浓缩精华卷含解析_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/0196dde1-4a83-4933-a3da-f6717140a3a6/0196dde1-4a83-4933-a3da-f6717140a3a63.gif)
![2022届黑龙江省大兴安岭达标名校中考数学最后冲刺浓缩精华卷含解析_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/0196dde1-4a83-4933-a3da-f6717140a3a6/0196dde1-4a83-4933-a3da-f6717140a3a64.gif)
![2022届黑龙江省大兴安岭达标名校中考数学最后冲刺浓缩精华卷含解析_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/0196dde1-4a83-4933-a3da-f6717140a3a6/0196dde1-4a83-4933-a3da-f6717140a3a65.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结
2、束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图由四个相同的小立方体组成的立体图像,它的主视图是( )ABCD2如图,平行四边形ABCD的周长为12,A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()ABCD3二次函数(a0)的图象如图所示,则下列命题中正确的是()Aa bcB一次函数y=ax +c的图象不经第四象限Cm(am+b)+ba(m是任意实数)D3b+2c04为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别
3、覆盖全市居民家庭的80%,15%和5%为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示下面有四个推断:年用水量不超过180m1的该市居民家庭按第一档水价交费;年用水量不超过240m1的该市居民家庭按第三档水价交费;该市居民家庭年用水量的中位数在150180m1之间;该市居民家庭年用水量的众数约为110m1 其中合理的是( )ABCD5从中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()ABCD6小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在
4、第1页写1,且之后每一页写的数均为他在前一页写的数加1若小昱在某页写的数为101,则阿帆在该页写的数为何?()A350B351C356D3587若0m2,则关于x的一元二次方程(x+m)(x+3m)3mx+37根的情况是()A无实数根B有两个正根C有两个根,且都大于3mD有两个根,其中一根大于m8某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A0.69×106B6.9×107C69×108D6.9×1079如图,AB与O相切于点A,BO与O相交于点C,点D是优弧AC上一点,CDA27
5、6;,则B的大小是( )A27°B34°C36°D54°10在直角坐标系中,已知点P(3,4),现将点P作如下变换:将点P先向左平移4个单位,再向下平移3个单位得到点P1;作点P关于y轴的对称点P2;将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是()AP1(0,0),P2(3,4),P3(4,3)BP1(1,1),P2(3,4),P3(4,3)CP1(1,1),P2(3,4),P3(3,4)DP1(1,1),P2(3,4),P3(4,3)二、填空题(共7小题,每小题3分,满分21分)11计算:_12如图,小军、小
6、珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为_m.13把一张长方形纸条按如图所示折叠后,若AOB70°,则BOG_14已知抛物线 的部分图象如图所示,根据函数图象可知,当 y0 时,x 的取值范围是_15如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得ACB=15°,ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为_m16如图,已知函数y3x+b和yax3的图象交于点P(
7、2,5),则根据图象可得不等式3x+bax3的解集是_17如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若OEC的面积为12,则k=_三、解答题(共7小题,满分69分)18(10分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?19(5分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为,是抛物线上位于对
8、称轴右侧的一点,若,且与的面积相等,求点的坐标;(3)若在轴上有且只有一点,使,求的值.20(8分)如图,AB是O的直径,CD与O相切于点C,与AB的延长线交于D(1)求证:ADCCDB;(2)若AC2,ABCD,求O半径21(10分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_人;扇形统计图中,“电视”所对应的圆心角的度数是_;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22(10分)规定:不相交的两个函数图象在竖
9、直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线yx22x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线yx22x+3与直线yx1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由(3)若抛物线yx22x+3与抛物线y+c的“亲近距离”为,求c的值23(12分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点将ACD绕点A顺时针方向旋转,得ACD,记旋转角为(I)如图,连接BD,当BDOA时,求点D的坐标;(II)如图,当60&
10、#176;时,求点C的坐标;(III)当点B,D,C共线时,求点C的坐标(直接写出结果即可)24(14分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐故选D.2、C【解析】过点B作BEAD于E,构建直角ABE,通过解
11、该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.【详解】如图,过点B作BEAD于E.A60°,设AB边的长为x,BEABsin60°x.平行四边形ABCD的周长为12,AB(122x)6x,yADBE(6x)×x(0x6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.【点睛】本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.3、D【解析】解:A由二次函数的图象开口向上可得a0,由抛物线与y轴交于x轴下方可得c0,由x=1,得出=1,故b0,b=2a,则bac,故此选
12、项错误;Ba0,c0,一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C当x=1时,y最小,即abc最小,故abcam2+bm+c,即m(am+b)+ba,故此选项错误;D由图象可知x=1,a+b+c0,对称轴x=1,当x=1,y0,当x=3时,y0,即9a3b+c0+得10a2b+2c0,b=2a,得出3b+2c0,故选项正确;故选D点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值4、B【解析】利用条形统计图结合中位数和中位数的定义分别分析得出答案【详解】由条形统计图可得:年用水量
13、不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),×100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),×100%=7%5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;5万个数据的中间是第25000和25001的平均数,该市居民家庭年用水量的中位数在120-150之间,故此选项错误;该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确
14、,故选B【点睛】此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键5、C【解析】根据正方形的判定定理即可得到结论【详解】与左边图形拼成一个正方形,正确的选择为,故选C【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.6、B【解析】根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【详解】解:小昱所写的数为 1,3,5,1,101,;阿帆所写的数为 1,8,15,22,设小昱所写的第n个数为101,根据题意得:101=1+(n-1)
15、×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2故选B.【点睛】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键7、A【解析】先整理为一般形式,用含m的式子表示出根的判别式,再结合已知条件判断的取值范围即可.【详解】方程整理为,方程没有实数根,故选A【点睛】本题考查了一元二次方程根的判别式,当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根8、B【解析】试题解析:0.00 000 069=6.9×10-7,故选B点睛:绝
16、对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定9、C【解析】由切线的性质可知OAB=90°,由圆周角定理可知BOA=54°,根据直角三角形两锐角互余可知B=36°【详解】解:AB与O相切于点A,OABAOAB=90°CDA=27°,BOA=54°B=90°-54°=36°故选C考点:切线的性质10、D【解析】把点P的横坐标减4,纵坐标减3可得P1的坐标;让点P的纵坐标不变,
17、横坐标为原料坐标的相反数可得P2的坐标;让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可【详解】点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,P1的坐标为(1,1)点P关于y轴的对称点是P2,P2(3,4)将点P绕原点O按逆时针方向旋转90°得到点P3,P3(4,3)故选D【点睛】本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(b,a)二、填空题(共7小题,每小题
18、3分,满分21分)11、【解析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案【详解】原式故答案为【点睛】本题考查了实数运算,正确化简各数是解题的关键12、3【解析】试题分析:如图,CDABMN,ABECDE,ABFMNF,即,解得:AB=3m,答:路灯的高为3m考点:中心投影13、55°【解析】由翻折性质得,BOGBOG,根据邻补角定义可得.【详解】解:由翻折性质得,BOGBOG,AOB+BOG+BOG180°,BOG(180°AOB)(180°70°)55°故答案为55°【点睛】考核知识点:补角,折叠.14、【
19、解析】根据抛物线的对称轴以及抛物线与x轴的一个交点,确定抛物线与x轴的另一个交点,再结合图象即可得出答案【详解】解:根据二次函数图象可知:抛物线的对称轴为直线,与x轴的一个交点为(-1,0),抛物线与x轴的另一个交点为(3,0),结合图象可知,当 y0 时,即x轴上方的图象,对应的x 的取值范围是,故答案为: 【点睛】本题考查了二次函数与不等式的问题,解题的关键是通过图象确定抛物线与x轴的另一个交点,并熟悉二次函数与不等式的关系15、(50)【解析】过点A作AMDC于点M,过点B作BNDC于点N则AMBN通过解直角ACM和BCN分别求得CM、CN的长度,则易得MNAB【详解】解:如图,过点A作
20、AMDC于点M,过点B作BNDC于点N,则ABMN,AMBN在直角ACM,ACM45°,AM50m,CMAM50m在直角BCN中,BCNACBACD60°,BN50m,CN(m),MNCMCN50(m)则ABMN(50)m故答案是:(50)【点睛】本题考查了解直角三角形的应用解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题16、x1【解析】根据函数y=3x+b和y=ax-3的图象交于点P(-1,-5),然后根据图象即可得到不等式 3x+bax-3的解集【详解】解:函数y=3x+b和y=ax-3的图象交于点P(-1,-5),不等式
21、60;3x+bax-3的解集是x-1,故答案为:x-1【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.17、12【解析】设AD=a,则AB=OC=2a,根据点D在反比例函数y=的图象上,可得D点的坐标为(a,),所以OA=;过点E 作ENOC于点N,交AB于点M,则OA=MN=,已知OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=,即可求得EM=;设ON=x,则NC=BM=2a-x,证明BMEONE,根据相似三角形的性质求得x=,即可得点E的坐标为(,),根据点E在在反比例函数y=的图象上,可得·=k,解方程求得k值即可.【详解】设AD=
22、a,则AB=OC=2a,点D在反比例函数y=的图象上,D(a,),OA=,过点E 作ENOC于点N,交AB于点M,则OA=MN=,OEC的面积为12,OC=2a,EN=,EM=MN-EN=-=;设ON=x,则NC=BM=2a-x,ABOC,BMEONE,,即,解得x=,E(,),点E在在反比例函数y=的图象上,·=k,解得k=,k0,k=12.故答案为:12.【点睛】本题是反比例函数与几何的综合题,求得点E的坐标为(,)是解决问题的关键.三、解答题(共7小题,满分69分)18、裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的
23、长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.19、(1).;(2)点坐标为;.(3).【解析】分析:(1)根据已知列出方程组求解即可;(2)作AMx轴,BNx轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三
24、角形相似建立等量关系列出方程求解即可详解:(1)由题可得:解得,.二次函数解析式为:.(2)作轴,轴,垂足分别为,则.,解得,.同理,., (在下方),即,.,.在上方时,直线与关于对称.,.,.综上所述,点坐标为;.(3)由题意可得:.,即.,.设的中点为,点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.轴,为的中点,.,即,.,.点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键20、(1)见解析;(2) 【解析】分析: (1)首先连接CO,根据CD与O相切于点C,可得:OCD=90°;然
25、后根据AB是圆O的直径,可得:ACB=90°,据此判断出CAD=BCD,即可推得ADCCDB(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据ADCCDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出O半径是多少详解:(1)证明:如图,连接CO,CD与O相切于点C,OCD=90°,AB是圆O的直径,ACB=90°,ACO=BCD,ACO=CAD,CAD=BCD,在ADC和CDB中,ADCCDB(2)解:设CD为x,则AB=x,OC=OB=x,OCD=90°,OD=x,BD=ODOB=xx=x,由(1)知
26、,ADCCDB,=,即,解得CB=1,AB=,O半径是点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握21、 (1)1000;(2)54°;(3)见解析;(4)32万人【解析】根据“每项人数总人数×该项所占百分比”,“所占角度360度×该项所占百分比”来列出式子,即可解出答案.【详解】解:(1)400÷40%1000(人)(2)360°×54°,故答案为:1000人; 54° ;(3)110%9%26%40%15%15%×1000150(人)(4)80×
27、52.8(万人)答:总人数为52.8万人.【点睛】本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.22、(1)2;(2)不同意他的看法,理由详见解析;(3)c1【解析】(1)把y=x22x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(2)如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),则PQ=t22t+3(t1),然后利用二次函数的性质得到抛物线y=x22x+3与直线y=x1的“亲近距离”,然后对他的看法进行判断;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设
28、M(t,t22t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为c,从而得到抛物线y=x22x+3与抛物线的“亲近距离”,所以,然后解方程即可【详解】(1)y=x22x+3=(x1)2+2,抛物线上的点到x轴的最短距离为2,抛物线y=x22x+3与x轴的“亲近距离”为:2;(2)不同意他的看法理由如下:如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),PQ=t22t+3(t1)=t23t+4=(t)2+,当t=时,PQ有最小值,最小值为,抛物线y=x22x+3与直线y=x1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,不同意他的看法;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),MN=t22t+3(t2+c)=t22t+3c=(t)2+c,当t=时,MN有最小值,最小值为c,抛物线y=x22x+3与抛物线的“亲近距离”为c,c=1【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键23、(I)(10,4)或(6,4)(II)C(6,2)(III)C(8,4)C(,)【解析】(I)如图,当OB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人股权抵押借款合同样本
- 产品授权代理合同实施细则
- 2025年别墅设计与建造合作协议模板
- 上海市新车购销合同模板
- 2025年仓储设施融资租赁合同
- 个人租住合同提前终止范本
- 个人垫付货款合同书模板
- 中小企业互惠借款合同
- 个人二手房交易合同范本详解
- 银行业务能力提升委托培训协议
- 九宫数独200题(附答案全)
- 典范英语2b课文电子书
- 17~18世纪意大利歌剧探析
- 微课制作技术与技巧要点
- β内酰胺类抗生素与合理用药
- 何以中国:公元前2000年的中原图景
- 第一章:公共政策理论模型
- 中考数学试题(含答案)共12套
- GB/T 4513.7-2017不定形耐火材料第7部分:预制件的测定
- GB/T 10205-2009磷酸一铵、磷酸二铵
- 公司财务制度及流程
评论
0/150
提交评论