反比例函数与图形面积_第1页
反比例函数与图形面积_第2页
反比例函数与图形面积_第3页
反比例函数与图形面积_第4页
反比例函数与图形面积_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(1)K0K0当当k0时,函数图象时,函数图象的两个分支分别在第的两个分支分别在第一、三一、三象限,在每个象限,在每个象限内,象限内,y随随x的增大的增大而减小而减小.当当k0时,函数图象时,函数图象的两个分支分别在第的两个分支分别在第二、四二、四象限,在每个象限,在每个象限内,象限内,y随随x的增大的增大而增大而增大.1.反比例函数的图象是反比例函数的图象是双曲线双曲线; 2.图象性质见下表:图象性质见下表:图图象象性性质质y=xkw反比例函数的图象和性质:反比例函数的图象和性质:则则垂足为垂足为轴的垂线轴的垂线作作过过有有上任意一点上任意一点是双曲线是双曲线设设,) 1 (:,)0(),(

2、AxPkxkynmP|21|2121knmAPOASOAPP(m,n)AoyxP(m,n)Aoyx面积性质面积性质(一)(一)P(m,n)AoyxP(m,n)Aoyx想一想想一想若将此题改为过若将此题改为过P点点作作y轴的垂线段轴的垂线段,其结其结论成立吗论成立吗?|21|2121knmAPOASOAP).( |,)2(如图所示如图所示则则垂足分别为垂足分别为轴的垂线轴的垂线轴轴分别作分别作过过矩形矩形knmAPOASBAyxPOAPBP(m,n)AoyxBP(m,n)AoyxB面积性质(二)面积性质(二)).(,),(),()3(如图所示如图所示则则点点轴的垂线交于轴的垂线交于作作与过与过轴

3、的垂线轴的垂线作作过过关于原点的对称点是关于原点的对称点是设设|k k| 2 2|2n2n| |2m2m|2 21 1|P PA AAPAP|2 21 1P PPAPAS S AyPxPnmPnmPP(m,n)AoyxP/面积性质(三)面积性质(三)P(m,n)oyxP/yP(m,n)oxP/以上几点揭示了双曲线上的点构成的几以上几点揭示了双曲线上的点构成的几何图形的一类性质何图形的一类性质. .掌握好这些性质掌握好这些性质, ,对对解题十分有益解题十分有益.(.(上面图仅以上面图仅以P P点在第一象点在第一象限为例限为例).).做一做PDoyx1.1.如图如图, ,点点P P是反比例函数是反

4、比例函数 图象上图象上的一点的一点,PDx,PDx轴于轴于D.D.则则PODPOD的面积的面积为为 . .xy2(m,n)13k. 3|,|kkSAPCO矩形,四象限图像在二又._, 3,. 9函数的解析式是则这个反比例阴影部分面积为轴引垂线轴向分别由图像上的一点是反比例函数如图yxPxkyPACoyxP.3xy解析式为解:由性质(2)可得A.S = 1 B.1S2_._.S, S,面面ABC的ABC的, , BC平行于xBC平行于x, ,AC平行于yAC平行于y 的任意的任意O O于原于原上上的的x x1 1y yB是B是A,A, ,7.如7.如则 积为 轴 轴两点对称关 图图点点像像函数函

5、数 ACoyxB解:由上述性质(3)可知,SABC = 2|k| = 2C_ _ _ _. ., ,S S 的的面面R Rt t, ,S S 的的面面R Rt tD D. .垂垂足足, ,的的垂垂C C作作y yB B. .垂垂足足, , 的的垂垂A A作作x x市市2 20 00 00 0年年) )6 6. .( (武武2 2O OC CD D1 1A AO OB B则积为积为记为线轴过为线轴过汉如图如图:A、C是函数是函数 的图象上任意两点,的图象上任意两点,x x1 1y y A.S1S2 B.S1S2 C.S1 = S2D.S1和S2的大小关系不能确定. C由上述性质由上述性质1可知选

6、可知选CABoyxCD DS1S2.,21|21,21|21,21|21321111ASSSkSkSkSOOCBOBAOA故选即解:由性质(1)得A._,)0(1,. 8321111111则有面积分别为的记边结三点轴于交轴引垂线经过三点分别向的图像上有三点在如图SSSOCCOBBOAAOCOBOACBAxxCBAxxyA.S1 = S2 = S3 B. S1 S2 S3 C. S3 S1 S2 S3 BA1oyxACB1C1S1S3S2交点问题:交点问题: 1 1、与坐标轴的交点问题:、与坐标轴的交点问题:无限趋近于无限趋近于x x、y y轴,轴, 与与x x、y y轴无交点。轴无交点。 2

7、2、与正比例函数的交点问题:、与正比例函数的交点问题:可以利用反比例函数的中心对称性。可以利用反比例函数的中心对称性。 3 3、与一次函数的交点问题:、与一次函数的交点问题:列方程组,求公共解,即交点坐标。列方程组,求公共解,即交点坐标。.)2(;) 1 (,23,) 1(:. 5的面积的坐标和交点求直线与双曲线的两个求这两个函数的解析式且轴于点在第二象限的交点与直线是双曲线的顶点如图AOCA、SBxABkxyxkyAABORtABOAyOBxCD. 6,412,. 4纵坐标是点的并且两点的图象相交于的图象与一次函数已知反比例函数如图PQPkxyxy.)2(;) 1 (的面积求式求这个一次函数

8、的解析POQyxoPQ. 2,8,. 3的纵坐标都是的横坐标和点且点两点的图象交于的图象与反比例函数已知一次函数如图BABAxybkxy.)2(;) 1 ( :的面积一次函数的解析式求AOBAyOBx.21):(4,. 6OBABOBBxABAAxkyOAO如果垂足为轴作过点在第一象限内交于与双曲线直线是坐标原点如图.),1 , 0()2(;) 1 (的面积求轴交于点与轴交于点与直线求双曲线的解析式AODDxCyACyxoADCB(4 4)试着在坐标轴上找)试着在坐标轴上找 点点D,D,使使AODAODBOCBOC。(1 1)分别写出这两个函数的表达式。)分别写出这两个函数的表达式。(2 2)

9、你能求出点)你能求出点B B的坐标吗?的坐标吗? 你是怎样求的?你是怎样求的?(3 3)若点)若点C C坐标是(坐标是(44,0 0). .请求请求BOCBOC的面积。的面积。8 8、如图所示,正比例函数、如图所示,正比例函数y=ky=k1 1x x的图象与的图象与反比例函数反比例函数y= y= 的图象交于的图象交于A A、B B两点,其两点,其中点中点A A的坐标为(的坐标为( ,2 2 )。)。 33k2xCD(4,0)4.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,

10、如图所示根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药)据测定,当空气中每立方米的含药量降低到量降低到0.45毫克以下时,学生方可进入毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?过多少小时后,学生才能进入教室? 1.如果函数 是反比例函数,那么m=_.122mxmy2. 请你任写一个函数,使它的图象请你任写一个函数,使它的图象是中心对称图形,且对称中心是原是中心对称图形,且对称中心是原点,在每一个象限内点,在每一

11、个象限内y都随自变量都随自变量 x的增大而减小:的增大而减小: .(2)函数)函数 的图象与直线的图象与直线y=x 没有交点,那么没有交点,那么k的取值范围是的取值范围是 ( ) A. k1 B.k1 D.k1如图,已知A(-4,n),B(2,-4),是一次函数y=kx+b的图象和反比例函数 的图象的两个交点(1)求反比例函数和一 次函数的解析式;(2)求直线AB与x轴的交 点C的坐标及AOB的面积;(3)求方程 的解(看图写)(4)求不等式 解集(看图写).xmy 0 xmbkx0 xmbkx在四个象限及坐标轴上的点的特征:(,)(,)(,)(,)O123 x-1-2-3-1-2123y(a

12、,0)(b,0)vst mV xy5xy31xmy2196xyaaxy0axayooo)0( kxkyo14 4xyoMNp12xy 如图所示,正比例函数 与反比例函数 的图象相交于A、C两点,过A作x轴的垂线交x轴于B,连接BC.若ABC面积为S,则_xy1)0( kkxybaxyxky xy422 ba4ba2a2b填一填1.1.函数函数 是是 函数,其图象为函数,其图象为 ,其中其中k=k= ,自变量,自变量x x的取值范围为的取值范围为 . .2.2.函数函数 的图象位于第的图象位于第 象限象限, , 在每一象限内在每一象限内,y,y的值随的值随x x的增大而的增大而 , , 当当x

13、x0 0时时,y,y 0,0,这部分图象位于第这部分图象位于第 象限象限. .x2y x6y 3.3.函数函数 的图象位于第的图象位于第 象限象限, , 在每一象限内在每一象限内,y,y的值随的值随x x的增大而的增大而 , , 当当x x0 0时时,y,y 0,0,这部分图象位于第这部分图象位于第 象限象限. .x6y 试归纳反比例函数的概念、图象与性质,试归纳反比例函数的概念、图象与性质,并与正比例函数作比较并与正比例函数作比较. .反比例函数的图象既是反比例函数的图象既是轴对称图形轴对称图形又又是中心对称图形。是中心对称图形。有两条对称轴:直线有两条对称轴:直线y=x和和 y=-x。对称

14、中心是:原点。对称中心是:原点xy01 2y = kxy=xy=-x则则垂足为垂足为轴的垂线轴的垂线作作过过有有上任意一点上任意一点是双曲线是双曲线设设,) 1 (:,)0(),(AxPkxkynmP|21|2121knmAPOASOAPP(m,n)AoyxP(m,n)Aoyx面积性质面积性质(一)(一)).( |,)2(如图所示如图所示则则垂足分别为垂足分别为轴的垂线轴的垂线轴轴分别作分别作过过矩形矩形knmAPOASBAyxPOAPBP(m,n)AoyxBP(m,n)AoyxB面积性质(二)面积性质(二)).(,),(),()3(如图所示如图所示则则点点轴的垂线交于轴的垂线交于作作与过与过

15、轴的垂线轴的垂线作作过过关于原点的对称点是关于原点的对称点是设设|k k| 2 2|2n2n| |2m2m|2 21 1|P PA AAPAP|2 21 1P PPAPAS S AyPxPnmPnmPP(m,n)AoyxP/面积性质(三)面积性质(三)P(m,n)AoyxP(m,n)Aoyx想一想想一想若将此题改为过若将此题改为过P点点作作y轴的垂线段轴的垂线段,其结其结论成立吗论成立吗?|21|2121knmAPOASOAPP(m,n)oyxP/yP(m,n)oxP/以上几点揭示了双曲线上的点构成的几以上几点揭示了双曲线上的点构成的几何图形的一类性质何图形的一类性质. .掌握好这些性质掌握好

16、这些性质, ,对对解题十分有益解题十分有益.(.(上面图仅以上面图仅以P P点在第一象点在第一象限为例限为例).).2.2.下列函数中下列函数中, ,图象位于第二、四象限图象位于第二、四象限的有的有 ;在图象所在象限内,;在图象所在象限内,y y的的值随值随x x的增大而增大的有的增大而增大的有 . .32x(5)y32x(4)y3x2(3)y32x(2)y3x2(1)y4.4.已知点已知点A(-2,yA(-2,y1 1),B(-1,y),B(-1,y2 2) )都在反比例函数都在反比例函数 的图象上的图象上, ,则则y y1 1与与y y2 2的大小关系的大小关系( (从大到小从大到小) )

17、为为 . .x4y x xk ky y(k(k0)0)y2 y14.4.已知点已知点A(-2,yA(-2,y1 1),B(-1,y),B(-1,y2 2) )都在反比例函数都在反比例函数 的图象上的图象上, ,则则y y1 1与与y y2 2的大小关系的大小关系( (从大到小从大到小) )为为 . .x4y x xk ky y(k(k0)0)A(xA(x1 1,y,y1 1),B(x),B(x2 2,y,y2 2) )且且x x1 10 0 x x2 2yxox x1 1x x2 2Ay1y2By1 0y24.4.已知点已知点A(-2,yA(-2,y1 1),B(-1,y),B(-1,y2 2

18、) )都在反比例函数都在反比例函数 的图象上的图象上, ,则则y y1 1、y y2 2与与y y3 3的大小关系的大小关系( (从大到小从大到小) )为为 . .x4y A(-2,yA(-2,y1 1),B(-1,y),B(-1,y2 2),C(4,y),C(4,y3 3) )yxo-1y1y2AB-24 4Cy3y3 y1y25.5.老师给出一个函数老师给出一个函数, ,甲、乙、丙三位同甲、乙、丙三位同学分别指出了这个函数的一个性质学分别指出了这个函数的一个性质: : 甲甲: :函数的图象经过第二象限函数的图象经过第二象限; ; 乙乙: :函数的图象经过第四象限函数的图象经过第四象限; ; 丙丙: :在每个象限内在每个象限内,y,y随随x x的增大而增大的增大而增大. .请你根据他们的叙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论