版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、本章是平面射影几何的精华, 也是最精彩的部分之一本章主要内容二次曲线的定义Pascal定理和Brianchon定理二次曲线的配极原理二次曲线的射影分类每一部分都有丰富的内容、深刻的内涵和重要的应用.一、二次曲线的代数定义一、二次曲线的代数定义 定义定义1 坐标满足坐标满足3,10()(1)ijijijjii jSa x xaa的所有点的所有点 (x1, x2, x3) 的集合称的集合称为一条为一条二阶曲线二阶曲线. 其中其中 (aij) 为为三阶实对称阵三阶实对称阵, 秩秩 (aij)1。 定义定义1 坐标满足坐标满足3,10()(1)ijijijjii jTb uubb的所有直线的所有直线
2、u1, u2, u3 的集合称的集合称为一条为一条二级曲线二级曲线. 其中其中 (bij) 为三为三阶实对称阵阶实对称阵, 秩秩 (bij)1。 定义定义2 如果如果 T 可以分解为可以分解为两个一次因式的乘积,则称两个一次因式的乘积,则称 T = 0 为为退化退化二级曲线,否则称为二级曲线,否则称为非退化非退化二级曲线。二级曲线。 定义定义2 如果如果 S 可以分解为两可以分解为两个一次因式的乘积,则称个一次因式的乘积,则称 S = 0 为为退化退化二阶曲线,否则称为二阶曲线,否则称为非非退化退化二阶曲线。二阶曲线。命题命题 S = 0 退化退化 |aij| = 0. 注注1. S, T 均
3、为高等代数中的实三元二次型。从代数上看,均为高等代数中的实三元二次型。从代数上看,S = 0和和T = 0 为相同的代数对象;从几何上看,它们是同一几何对象为相同的代数对象;从几何上看,它们是同一几何对象的不同描述,因此统称为的不同描述,因此统称为二次曲线二次曲线。 注注2. 在需要时,在需要时,S = 0和和T = 0 均可写为矩阵格式:均可写为矩阵格式:111213112312222321323333( ,)0,0. (,( )1)aaaxSx x xaaaxaaaxSXAXAAA或秩 注注3. 由对偶原则,我们一般仅讨论二阶曲线,其结论均可对由对偶原则,我们一般仅讨论二阶曲线,其结论均可
4、对偶地适用于二级曲线。偶地适用于二级曲线。二、二次曲线的几何结构二、二次曲线的几何结构 定理定理1 不同心的两个射影线束对应直线交点的全体构成一条不同心的两个射影线束对应直线交点的全体构成一条经过此二线束束心的二阶曲线经过此二线束束心的二阶曲线 .注注:若已知两个射影线束若已知两个射影线束 A + B A + B 的对应式的对应式0(0)abcdadbc则由此构成的二阶曲线方程为则由此构成的二阶曲线方程为:0(4.2)aAAdBBbABcA B 定理定理2 设二阶曲线设二阶曲线 由射影线束由射影线束 O(P) 与与 O(P) 生成,则在生成,则在 上任意取定相异二点上任意取定相异二点 A和和B
5、,与,与 上的动点上的动点 M 连线可得两个射连线可得两个射影线束影线束)(MA).(MB 注注:由本定理由本定理, 一旦二阶曲线由两个射影线束生成,则其上点一旦二阶曲线由两个射影线束生成,则其上点的地位平等,以曲线上任意相异二点为束心与曲线上的点连线则的地位平等,以曲线上任意相异二点为束心与曲线上的点连线则得到两个也生成此曲线的射影线束。得到两个也生成此曲线的射影线束。定理定理2的的证明证明. 设设 由由 O(P) O(P) 生成,需证生成,需证()().A MB M设设AMOPKBMO PK)()(KOPMA()()B MO P K所以只要证所以只要证()().OP KO P K设设,.O
6、 A BMA OBAMB( )( ),O PO P( ,)( ,).O A B P MO A B P M分别以分别以AM, BM截得截得注意到注意到,MM ( ,)(,).AM A B K MBM A B K M( ,)(,).AM A B K MBM A B K M从而对应点的连线共点,即从而对应点的连线共点,即 AA, BB, KK 共点于共点于 S。但是但是SO A OB为定点,故当为定点,故当 M 变动时,变动时,KK 经过定点经过定点 S,即,即()().OP KO P K则有则有 推论推论1 平面上五点平面上五点(其中无其中无三点共线三点共线)唯一确定一条非退唯一确定一条非退化二阶
7、曲线。化二阶曲线。 推论推论1 平面上五直线平面上五直线(其中其中无三线共点无三线共点)唯一确定一条非唯一确定一条非退化二级曲线。退化二级曲线。 推论推论2 任一二阶曲线可由任一二阶曲线可由两个射影线束生成。两个射影线束生成。 推论推论2 任一二级曲线可由任一二级曲线可由两个射影点列生成。两个射影点列生成。 推论推论3 二阶曲线上四个定二阶曲线上四个定点与其上任意一点连线所得四点与其上任意一点连线所得四直线的交比为定值。直线的交比为定值。 推论推论3 二级曲线上四条定二级曲线上四条定直线被其上任意一条直线所截直线被其上任意一条直线所截得四点的交比为定值。得四点的交比为定值。 注注:推论推论3对
8、于解析几何中的各种二次曲线都适用。对于解析几何中的各种二次曲线都适用。三、二次曲线的射影定义三、二次曲线的射影定义 由上述的两个定理及其推论,我们有由上述的两个定理及其推论,我们有 定义定义3 在射影平面上,称在射影平面上,称两个射影线束对应直线交点的两个射影线束对应直线交点的集合为一条二阶曲线。集合为一条二阶曲线。 定义定义3 在射影平面上,称在射影平面上,称两个射影点列对应点连线的集两个射影点列对应点连线的集合为一条二级曲线。合为一条二级曲线。 思考思考:试研究本定义是如何包含退化二次曲线的。试研究本定义是如何包含退化二次曲线的。提示提示:考虑透视对应、射影变换的情况。考虑透视对应、射影变
9、换的情况。 例例1 求由两个射影线束求由两个射影线束 x1 x3 = 0, x2 x3 = 0 ( + = 1) 生生成的二阶曲线方程。成的二阶曲线方程。 解解 令令13230,0;0,0.AxBxAxBx 利用定理利用定理1的证明,此二射影线束的证明,此二射影线束00ABAB生成的二阶曲线的方程为生成的二阶曲线的方程为0(2)aAAdBBbABcA B由由 + = 1 得得 a = 0, b = c = 1, d = 1 , 代入上式得代入上式得, 0233231xxxxx即即003213xxxx这是一条退化的二阶曲线。这是一条退化的二阶曲线。四、二阶曲线的切线四、二阶曲线的切线本部分总假定
10、本部分总假定:所论二次曲线为非退化的所论二次曲线为非退化的.1. 定义定义 定义定义4 与二阶曲线与二阶曲线 交于两个重合的点的直线称为交于两个重合的点的直线称为 的切线。的切线。共轭的虚切线重合的实切线相异的实切线的两条有过内上外在点一般地PP,四、二阶曲线的切线四、二阶曲线的切线2、切线的方程、切线的方程问题问题:已知二阶曲线已知二阶曲线) 1 ()(0:31,jiijjijiijaaxxaS求过定点求过定点 P(p1, p2, p3) 的的 的切线方程。的切线方程。 设设 Q(q1,q2,q3)为平面上任一点,则直线为平面上任一点,则直线 PQ 上任一点可表为上任一点可表为 xi = p
11、i + qi 。 PQ 为为 的切线的切线 PQ 交交 于两个重合的点于两个重合的点 将将 xi = pi + qi 代入代入 :S = 0 后只有一个解。代入得后只有一个解。代入得()()0,ijiijjapqpq即即0)(2jijijijiijqqpqqpppa)2(0)(2jiijjiijjiijjiijppapqaqpaqqa为简便计,我们引入记号为简便计,我们引入记号jiijppppaSjiijqqqqaSjiijpqqpaSjiijqppqaSjiijpxpaSjiijqxqaS.,qppqjiijSSaa代入代入(2)式得式得)3(022pppqqqSSS整理得整理得从而从而Q(
12、q1,q2,q3) 在过在过 P(p1, p2, p3) 的切线上的切线上 (3) 对对 有二重根有二重根 )4(2ppqqpqSSS(4) 式即为式即为 Q(q1,q2,q3)是是 过过 P(p1, p2, p3) 的切线上的点的充要条的切线上的点的充要条件。习惯地,将其中的流动坐标件。习惯地,将其中的流动坐标 qi 换为换为 xi ,得到二阶曲线过点,得到二阶曲线过点 P(p1, p2, p3) 的切线方程为的切线方程为)5(2SSSppp(5) 式为一个二次方程,故经过平面上一点式为一个二次方程,故经过平面上一点 P 一般有两条切线。一般有两条切线。 如果如果 P 在在 上,则上,则 S
13、pp = 0,从而,二阶曲线上一点,从而,二阶曲线上一点 P 处的切线处的切线方程为方程为)6(0pS注注:Sp = 0 常用的等价写法常用的等价写法. 0),().1 (321332313232212131211321xxxaaaaaaaaappp. 0).2(332211xxSxxSxxSppp. 0).3(332211pxSpxSpxS请自行证明这请自行证明这三种写法确实三种写法确实都与都与Sp=0等价等价.(3)式与解析几何中式与解析几何中的切线方程一致的切线方程一致五、二级曲线的切点五、二级曲线的切点设设:0()| 0(1)ijijijjiijTb uubbb 1.切点的定义切点的定
14、义2. 切点方程切点方程一般一般 ( 在在l上的切点上的切点):) 5(2TTTlll特殊特殊 ( l 属于属于 ):) 6(0lT 一般地,过平面上一点有一般地,过平面上一点有 的两条直线。若过平面上某的两条直线。若过平面上某点点 P 有且仅有有且仅有 的一条直线,则称的一条直线,则称 P 为为 的一个的一个切点切点。 例例2 如果两个三点形如果两个三点形 ABC 与与 ABC 同时内接于一条二次曲线,同时内接于一条二次曲线, 求证它们也同时外切于一条二次曲线。求证它们也同时外切于一条二次曲线。证证. 设交点设交点 D, E; D, E 如图。如图。 因为因为 A, B, C, A, B,
15、C 在同一条二次曲线上,在同一条二次曲线上,据二阶曲线的射影定义有据二阶曲线的射影定义有(, , ,)C B A B A(, , ,).C B A B A又又(, , ,)C B A B A(,)A B B E D A (, , ,)C B A B A).,(EBADAB(,)A B B E D A ).,(EBADAB 由二级曲线的射影定义,这两个射影点列的对应点连线以由二级曲线的射影定义,这两个射影点列的对应点连线以及点列的底共六条直线属于同一条二级曲线,这六条直线恰好及点列的底共六条直线属于同一条二级曲线,这六条直线恰好是已知两个三点形的六条边。结论成立。是已知两个三点形的六条边。结论成
16、立。注注:本题的逆命题成立。本题的逆命题成立。 六、二阶曲线与二级曲线的统一六、二阶曲线与二级曲线的统一 定理定理3(Maclaurin) 一条非一条非退化二阶曲线的全体切线构成退化二阶曲线的全体切线构成一条非退化二级曲线。一条非退化二级曲线。 定理定理3 (Maclaurin) 一条非一条非退化二级曲线的全体切点构成退化二级曲线的全体切点构成一条非退化二阶曲线。一条非退化二阶曲线。证明证明 设设. 0:jiijxxaS 若若P(p1,p2,p3)是切线是切线uu1,u2,u3的切点,则有的切点,则有Sp=0,于是,于是kupapapaupapapaupapapa333323213123232
17、221211313212111因此有因此有0000332211333323213123232221211313212111pupupukupapapakupapapakupapapa这个关于这个关于p1,p2,p3和和k的方程组有非零解,所以的方程组有非零解,所以1112131122223213233331230(13)0aaauaaauaaauuuu这是一个二级曲线的方程这是一个二级曲线的方程. 设设. 0:jiijxxaS由本定理的证明可知,由本定理的证明可知,u1,u2,u3 为为 上一点处的切线上一点处的切线1112131122223213233331230(13)0aaauaaaua
18、aauuuu展开展开, 得得. 0| ,. 02ijijjiijjiijaAAAuuAT且注注:本定理提供了二次曲线的点坐标、线坐标方程互化方法。本定理提供了二次曲线的点坐标、线坐标方程互化方法。 推论推论4 若若 bij = Aij ( 0 ),则,则 S aijxixj= 0 与与 T bijuiuj = 0 表示同一条二次曲线。表示同一条二次曲线。这里这里Aij是是aij的代数余子式的代数余子式. 例例3 求证:求证:x1x3 x22 = 0 与与 4u1u3 u22 = 0 表示同一条二次曲表示同一条二次曲线线. 证明证明. 第一步第一步. 验证已知两条二次曲线为非退化验证已知两条二次
19、曲线为非退化.第二步第二步. 将将 aij, u1, u2, u3 代入代入 (13) 式式, 展开即得展开即得 4u1u3 u22 = 0.七、二阶曲线束七、二阶曲线束 定理定理4 平面上两条相异的二阶曲线一般有四个交点平面上两条相异的二阶曲线一般有四个交点. 证明证明. 设设1: f aijxixj=0, 2: g bijxixj =0, 则联立则联立00gf即为即为1与与2的交点的交点, 显然显然, 在复数范围内一般有四个解在复数范围内一般有四个解. 定义定义5 设设f=0, g=0为平面上两条相异的二阶曲线为平面上两条相异的二阶曲线. 则称由则称由)14(0Rgf所决定的二阶曲线的全体为以所决定的二阶曲线的全体为以f=0, g=0的四个交点为的四个交点为基点基点的的二阶二阶曲线束曲线束. 若若f=0, g=0的四个交点相异的四个交点相异, 则称为二阶曲线的则称为二阶曲线的四点形束四点形束. 定理定理5 经过平面上任一点经过平面上任一点P(非基点非基点), 必有一条二阶曲线属于必有一条二阶曲线属于已知束已知束f+g=0. 证明证明. 因为因为P不是不是f=0与与g=0的交点的交点, 故故fpp与与gpp不同时为零不同时为零. 不妨不妨设设gpp0. 令令.0ppppgf则则f+0g=0为过为过P且属于且属
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师开学前军训心得体会5篇
- 物流设施与设备第二章航空管道
- 债务偿付质押合同(2篇)
- 公共事业投资合作协议书(2篇)
- 河南省安阳市第六十二中学2022年高三语文下学期期末试卷含解析
- 2025年Γ-球蛋白三类项目合作计划书
- 上海写字楼租赁合同范本
- 幼儿园房屋租赁合同书范本
- 小吃街摊位租赁合同
- 长期租赁合同范本
- 烈士陵园的数字化转型与智能服务
- 生理学重点复习资料全
- 初中生理想信念教育班会(3篇模板)
- (高清版)JGT 225-2020 预应力混凝土用金属波纹管
- 2024年上海市奉贤区中考一模英语试题(含答案解析)
- 农产品加工与贮藏原理复习资料
- (正式版)JBT 5300-2024 工业用阀门材料 选用指南
- Unit1WhatsthematterSectionB2a-2e教学设计人教版八年级英语下册
- 工艺工程师的成长计划书
- 幼儿园大班音乐教案《爆米花》教学反思
- 家政运营方案
评论
0/150
提交评论