版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、椭圆的参数方程椭圆的参数方程 如下图,以原点如下图,以原点O为圆心,分别以为圆心,分别以a,b(ab0)为半径作两个同心圆,设为半径作两个同心圆,设A为大圆上的任意一点,连为大圆上的任意一点,连接接OA,与小圆交于点与小圆交于点B ,过点,过点A作作ANox,垂足为,垂足为N,过点过点B作作BMAN,垂足为,垂足为M,求当半径,求当半径OA绕点绕点O旋旋转时点转时点M轨迹的参数方程轨迹的参数方程. OAMxyNB分析:设分析:设M点的坐标为(点的坐标为(x,y)点点A 的横坐标与的横坐标与M点的横坐点的横坐标相同标相同,点点B 的纵坐标与的纵坐标与M点的纵坐标点的纵坐标相同相同. 而而A、B的
2、坐标可以通过的坐标可以通过引进参数建立联系引进参数建立联系.OAMxyNB解:解:设设XOA=, 则则A: (acos, a sin),B: (bcos, bsin),由此由此:即为即为点点M M轨迹的轨迹的参数方程参数方程. . sinbycosax( 为 参 数)消去参数得消去参数得: :,bya12222x即为即为点点M M轨迹的轨迹的普通普通方程方程. . 如下图,以原点如下图,以原点O为圆心,分别以为圆心,分别以a,b(ab0)为半径作两个同心圆,设为半径作两个同心圆,设A为大圆上的任意一点,连为大圆上的任意一点,连接接OA,与小圆交于点与小圆交于点B ,过点,过点A作作ANox,垂
3、足为,垂足为N,过点过点B作作BMAN,垂足为,垂足为M,求当半径,求当半径OA绕点绕点O旋旋转时点转时点M的轨迹参数方程的轨迹参数方程. 1 .参数方程参数方程 是椭圆是椭圆 的参数方程的参数方程.cosxasinyb2 .在椭圆的参数方程中,常数在椭圆的参数方程中,常数a、b分别是椭分别是椭圆的长半轴长和短半轴长圆的长半轴长和短半轴长. ab 另外另外 称为称为离心角离心角,规定参数规定参数 的取值的取值范围是范围是0, 2)cos ,sin .xaXyb焦点在 轴cos ,sin .x bYya焦点在 轴( 为 参 数)y ya aa ab b22221 ( .0)xbOAMxyNB归纳
4、比较归纳比较椭圆的标准方程椭圆的标准方程: :12222byax椭圆的参数方程中参数椭圆的参数方程中参数的几何意义的几何意义: :)(sinbycosa为为参参数数 xxyO圆的标准方程圆的标准方程: :圆的参数方程圆的参数方程: : x2+y2=r2)(sinycos为为参参数数 rrx的几何意义是的几何意义是AOP=,是旋转角,是旋转角PA椭圆的参数方程椭圆的参数方程: :是是AOX=,不是不是MOX=.称离心角称离心角【练习【练习1】把下列普通方程化为参数方程把下列普通方程化为参数方程. 22149xy22116yx (1)(2)3 cos5 sinxy8 cos10 sinxy(3)(
5、4)把下列参数方程化为普通方程把下列参数方程化为普通方程2 cos(1)3sinxycos(2)4sinxy2264100(4)1yx22925(3)1yx练习练习2:已知椭圆的参数方程为已知椭圆的参数方程为 ( 是参数是参数) ,则此椭圆的长轴长为(,则此椭圆的长轴长为( ),),短轴长为(短轴长为( ),焦点坐标是(),焦点坐标是( ),),离心率是(离心率是( )。)。2cos sinxy4232( , 0)3例例1、如图,在椭圆如图,在椭圆x29+y24=1上求一点上求一点M,使使M到直线到直线 l:x+2y-10=0的距离最小的距离最小.xyOP分析分析1平移直线平移直线 l 至首次
6、与椭圆相切,切点即为所求至首次与椭圆相切,切点即为所求.22204936xymxy000,M(,)消元,利用,求出进而求得切点 mxyM M设 (3 cos,2 sin)是椭圆上任一点.|3cos4sin -10|5d则小结:小结:借助椭圆的参数方程,可以将椭圆上的任意一借助椭圆的参数方程,可以将椭圆上的任意一点的坐标用三角函数表示,利用三角知识加以解决点的坐标用三角函数表示,利用三角知识加以解决.例例1、如图,在椭圆如图,在椭圆x29+y24=1上求一点上求一点M,使,使M到直线到直线 l:x+2y-10=0的距离最小的距离最小.分析分析23cos()2sinxy椭圆参数方程为:为参数34|
7、5cossin-10|555()0|5cos-10|5()00034cos,sin55其中满足05d当=0时, 取最小值,0098coscos,2sin2sin55此时339 8M( , )210055 5Mxy时,点与直线的距离取最小值。例例2.已知椭圆已知椭圆 ,求椭圆内接矩形求椭圆内接矩形面积的最大值面积的最大值.22221(0)xyabab解:设椭圆内接矩形的一个顶点坐标为解:设椭圆内接矩形的一个顶点坐标为( cos , sin )ab4cossinSab矩形()24kkZSab矩形当时,最大。所以椭圆内接矩形面积的最大值为所以椭圆内接矩形面积的最大值为2ab.2sin 2ab2ab例
8、例3:已知已知A,B两点是椭圆两点是椭圆 与坐标轴正半轴的两个交点与坐标轴正半轴的两个交点,在第一象限的椭圆弧上在第一象限的椭圆弧上求一点求一点P,使四边形使四边形OAPB的面积最大的面积最大.22941yx:解 由椭圆参数方程,设点P(3cos ,2sin )PAB即求点 到直线的距离的最大值。,ABCABPS面积一定需求 S最大即可132xy直线AB的方程为:22| cossin6|23d6662 sin()1413,d当 =时有最大值 面积最大.43 22P这时点 的坐标为(, 2)2360 xy练习练习1、动点、动点P(x,y)在曲线在曲线 上变化上变化 ,求,求2x+3y的最的最大值
9、和最小值大值和最小值14922yx.,2626最小值最小值最大值最大值2、取一切实数时,连接取一切实数时,连接A(4sin,6cos)和和B(-4cos, 6sin)两点的线段的中点轨迹是两点的线段的中点轨迹是 . A. 圆圆 B. 椭圆椭圆 C. 直线直线 D. 线段线段B设中点设中点M (x, y)x=2sin-2cosy=3cos+3sin22y249x3cos ,2sin设 xy236cos6sinxy6 2sin()4(3cos ,2sin ). (2,3). (3,0). (1,3). (0,)23、当参数 变化时,动点所确定的曲线必过点 点 点 点PABCD它的焦距是多少?它的焦距是多少?B2 5练习练习317cos()_,8sin2_.4.椭圆为参数 的中心坐标为准线方程为xy(3, 2)289315x 小结小结(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《医学伦理学》课程教学大纲 2
- 辽宁省鞍山市重点高中2024-2025学年高一上学期10月月考化学试题含答案
- 2024年仿古摆摊车转让合同范本
- 2024年出售井盖合同范本大全
- 2024年出口导弹合同范本大全
- 剖宫产术前术后的护理常规
- 四川省德阳市中江县2024-2025学年七年级上学期11月期中历史试题(含答案)
- 乳癌的护理查房
- 商业综合体消防岗位培训
- 低血糖护理业务学习
- 《ST欧浦大股东掏空行为案例研究》
- 医院改扩建工程可行性研究报告(论证后)
- 【初中生物】第三章微生物检测试题 2024-2025学年人教版生物七年级上册
- 六年级数学上册 (基础版)第4章《比》单元培优拔高测评试题(学生版)(人教版)
- 《中华人民共和国药品管理法》
- 医科大学2024年12月肿瘤护理学作业考核试题答卷
- 2024年大型风力发电项目EPC总承包合同
- 2025届浙江省宁波市海曙区效实中学物理高二第一学期期末考试试题含解析
- 2025届高考语文一轮复习:二元思辨类作文思辨关系高阶思维
- 《中国慢性阻塞性肺疾病基层诊疗与管理指南(2024年)》解读
- HSK标准教程5下-课件-L7
评论
0/150
提交评论