任意项级数的敛散性判别PPT教案_第1页
任意项级数的敛散性判别PPT教案_第2页
任意项级数的敛散性判别PPT教案_第3页
任意项级数的敛散性判别PPT教案_第4页
任意项级数的敛散性判别PPT教案_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、任意项级数的敛散性判别任意项级数的敛散性判别 11:1npnp级数级数、 发散发散时时当当收敛收敛时时当当,1,1pp敛敛散散性性、 02nnaq 发散发散时时当当收敛收敛时时当当,1,1qqn 113n 、调调和和级级数数.发发散散 极限形式:极限形式:非极限形式:非极限形式:比较判别法:比较判别法: 发散发散发散,则发散,则收敛收敛收敛,则收敛,则则则nnnnnnvuuvcvu, 发散发散发散,则发散,则收敛收敛收敛,则收敛,则同敛散同敛散若若给定给定nnnnnnnnuvruvrrrvuv, 0,0lim,第1页/共29页比值判别法比值判别法: (不需要比较对象)(不需要比较对象)ruun

2、nn 1lim 方法失效方法失效发散发散则则收敛收敛则则, 1, 1, 1rururnn根式判别法:根式判别法: (不需要比较对象)(不需要比较对象)runnn lim 方法失效方法失效发散发散则则收敛收敛则则, 1, 1, 1rururnn第2页/共29页7.3 任意项级数敛散性的判别任意项级数敛散性的判别 一、交错级数一、交错级数 二、莱布尼兹判别法二、莱布尼兹判别法 三、绝对收敛、条件收敛三、绝对收敛、条件收敛第3页/共29页一、任意项级数、交错级数的定义一、任意项级数、交错级数的定义定义定义 正项和负项任意出现的级数称为正项和负项任意出现的级数称为任意项级数任意项级数. .1nnu 若

3、若是是正正项项级级数数, ,1nnnuS 则则收收敛敛其其部部分分和和数数列列有有界界. .1nnu 若若是是任任意意项项级级数数, ,1nnnuS 则则收收敛敛其其部部分分和和数数列列有有界界. .?11( 1)nn 111111 01nnSn 为为偶偶数数为为奇奇数数,nS有有界界11( 1).nn 但但发发散散 nnnu11)1(定义定义 正、负项相间的级数称为交错级数正、负项相间的级数称为交错级数. .)0( nu其中其中 4321uuuu 4321 uuuu nnnu1)1(第4页/共29页二、莱布尼兹判别法(交错级数)二、莱布尼兹判别法(交错级数)1231(1)nnuuuuu (2

4、) lim0nnu 11( 1):nnnu 莱莱布布尼尼兹兹判判别别法法 若若交交错错级级数数满满足足111( 1).nnnusu 则则收收敛敛, ,且且它它的的和和, 01 nnuu21234212()()()nnnSuuuuuu 2,nS即即数数列列是是单单调调增增加加的的证证212322212()()nnnnSuuuuuu又又1u 2,nS数数列列是是有有界界的的21lim.nnSsu, 0lim12 nnu21221limlim()nnnnnSSu, s .,1uss 且且级级数数收收敛敛于于和和第5页/共29页解解,1 nnuununnn1limlim . 0 所以所以原级数收敛原级

5、数收敛.(1),111 nn(2),1nun 11( 1)nnnu 11nn 解解,1 nnuu)1(limlimnnunnn . 0 原级数收敛原级数收敛.(1)nn 1112 nn(2)nnn 11limnnun 1121 nn1 nu第6页/共29页解解12lim nnn021 原级数原级数发散发散. nnulim注:对于交错级数注:对于交错级数, 0lim,)1( nnnnuu 若若则一定发散则一定发散. .lim0nnu22lim( 1)0nnnulim( 1)0nnnu11( 1).nnnu 发发散散解解考察函数考察函数的单调性。的单调性。xxxfln)( ,ln)(nnnfun

6、2ln1)( )1(xxxf )3( , 0 x,ln , 3单调递减单调递减故当故当nnn xxxlnlim. 0 原级数收敛原级数收敛. nnnlnlim)2(xx1lim 第7页/共29页当当nu的单调性不好判断时,可借助函数的单调性不好判断时,可借助函数f(x)的单调性的单调性对对f(n)进行判断,不可以直接对进行判断,不可以直接对f(n) 求导。求导。注:对于交错级数注:对于交错级数nnu lim不容易求解时,可转换为函数极限问题;不容易求解时,可转换为函数极限问题;, )()1()1(11 nfunnn当 )1(xx)2(0 x解解,1单单调调递递减减故故函函数数 xx1(2),n

7、nuun 1limlim)2( nnunnn. 0 原级数收敛原级数收敛.(1)考察函数考察函数的单调性。的单调性。1)( xxxf2)1(2)1( xxx第8页/共29页1()lnxx )2(0 x解解1,lnxx 故故函函数数单单调调递递减减1(2),nnuun (1)考察函数考察函数的单调性。的单调性。1( )lnf xxx 211lnxxx 21lnxx xx 1(2) limlimlnnnnunn 1limlnxxx limlnxxx lnlim1xxxxln1lim1xxxx 221lnlim1xxxx lim 1lnxx 0 lim0nnu原级数收敛原级数收敛.第9页/共29页三

8、、绝对收敛和条件收敛三、绝对收敛和条件收敛定理定理 若若 1nnu收敛收敛, ,则则 1nnu收敛收敛. . 证证明明:|nnnuuu 0| 2|nnnuuu 1|nnnuu 是是正正项项级级数数, ,1|nnu 且且是是收收敛敛级级数数. . 1|().nnnuu 也也是是收收敛敛级级数数 正正项项级级数数的的比比较较判判别别法法 11|nnnnnnuuuu从从而而也也是是收收敛敛级级数数. .1|nnu 注注:发发散散,1nnu 发发散散1111|1|nnnnn()发发散散, ,nn 11(-1)n 但但收收敛敛. .第10页/共29页1nnu 对对于于收收敛敛的的任任意意项项级级数数来来

9、说说,1|nnu 有有些些收收敛敛,1|nnu 而而有有些些发发散散。收敛,收敛,例:例:21nn1(-1)n 收敛,收敛,n1(-1)1nn n22n 1n 111(-1)nn 收收敛敛. .nn 1n 111(-1)nn= =发发散散。11|nnnnuu 收收敛敛,收收敛敛1nnu 绝绝对对收收敛敛1nnu 条条件件收收敛敛收敛收敛发散,发散, 11nnnnuu第11页/共29页n2n 11(-1)n 例例:nn 11(-1)n 绝对收敛绝对收敛条件收敛条件收敛11|nnnnuu 收收敛敛,收收敛敛1nnu 绝绝对对收收敛敛1nnu 条条件件收收敛敛收敛收敛发散,发散, 11nnnnuu第

10、12页/共29页例:判别级数例:判别级数的敛散性。的敛散性。 11)0()1(npnpn解:解:时,时,1 p 原原级级数数条条件件收收敛敛. .时,时,1 p11111|( 1)|nppnnnn 11111|( 1)|nppnnnn 此此时时, ,原原级级数数绝绝对对收收敛敛. .发散,发散,收敛,收敛,n1n111,limlim0,(1)npppnnuuunnn 又又11pnn 发散发散时时当当收敛收敛时时当当,1,1pp111( 1)npnn 1,1,pp 当当时时绝绝对对收收敛敛当当时时条条件件收收敛敛第13页/共29页例:判别级数例:判别级数2( 1)lnnnn 的的敛敛散散性性.

11、.解:解:22( 1)1lnlnnnnnn 11lnnn 21,nn 且且发发散散21.lnnn 发发散散111lnln(1)nnuunn 又又1lim0lnnn 2( 1).lnnnn 条条件件收收敛敛第14页/共29页四、任意项级数的判别方法四、任意项级数的判别方法定理:定理:1nnu 设设为为任任意意项项级级数数,则则若若,|lim1ruunnn 时时,当当1)1( r1nnu 绝绝对对收收敛敛。时时,当当1)2( r1,nnu 发发散散时时,当当1)3( r判判别别法法失失效效。1nnu 发发散散。1,nnu 收收敛敛1111nnnnnnnnuuuu发发散散时时,可可能能收收敛敛,也也

12、可可能能发发散散,但但若若根根据据比比值值判判别别法法:判判定定发发散散,则则发发散散. .第15页/共29页例:例:的敛散性。的敛散性。判别级数判别级数 nnn2)1(31解:解: 31322)1(limnnnnn 3)11(21limnn211 绝对收敛。绝对收敛。nnn2)1(3 |lim1nnnuu例:例:113( 1)!nnnnn 判判别别级级数数的的敛敛散散性性。解:解:13(1)!1lim3!nnnnnnn 3e 1 3( 1)2nnn 发发散散. . |lim1nnnuulim31nnnn 3lim11nnn 第16页/共29页-11(-1).nnnxn 例例 讨讨论论的的敛敛

13、散散性性x-111nnnxn ( )解:解:111lim1nnnxnxn lim1nnxn 11( 1).nnnxn 绝绝对对收收敛敛(1)0,x 当当时时10n 绝绝对对收收敛敛; ;(2)0,x 当当时时1nnxn 1,x当当时时11( 1).nnnxn 发发散散1,x 当当时时1,x 当当时时11( 1)nnn 原原级级数数.条条件件收收敛敛1,x 当当时时11nn 原原级级数数.发发散散第17页/共29页 2sinnna,112收敛收敛而而 nn解解,sin12 nnna收敛收敛故由定理知原级数绝对收敛故由定理知原级数绝对收敛.经判断该级数为任意项级数(易出错认为正项级数)经判断该级数

14、为任意项级数(易出错认为正项级数),12n考虑绝对值级数考虑绝对值级数21sinnnan 22sin1nann ,112收敛收敛而而 nn21sin.nnan 收收敛敛第18页/共29页21(1)sin2nnn 1!(3)2 sin5nnnnnn (1).解解显显然然,该该级级数数为为正正项项级级数数2112(1) sin2limlimsin2nnnnnnnuun 212(1)2lim2nnnnn 112.所所以以该该级级数数收收敛敛221sin5(2)5nnnn 第19页/共29页(2).解解显显然然,该该级级数数为为正正项项级级数数221sin5(2)5nnnn 222sin555nnnn

15、n 21,5nnn 对对级级数数而而言言2112(1)5limlim5nnnnnnnunu 211lim5nnn 11521,5nnn 级级数数收收敛敛221sin5.5nnnn 从从而而收收敛敛第20页/共29页1!(3)2 sin5nnnnnn (3).解解显显然然,该该级级数数为为任任意意项项级级数数!2 sin25nnnnnnnnn 1!2nnnnn 考考查查正正项项级级数数111(1)!2(1)limlim!2nnnnnnnnnunnun 1(1)!lim2(1)!nnnnnnn 1lim21(1)nnn 21e1!2,nnnnn 收收敛敛1!2 sin5nnnnnn 于于是是由由比

16、比较较判判别别法法得得收收敛敛, , .从从而而原原级级数数绝绝对对收收敛敛第21页/共29页11( 1)1.ln(1nnn )132( 1)3.2nnnn 212( 1)24.!nnnn 2( 1)2.lnnnnn 2(1)5.( 1)(1)(2)nnn nnn 15142( 1)6.( 1)nnnn 1nnu 考考查查的的敛敛散散性性比比值值11nnnnuu 与与同同敛敛散散比比较较或或比比较较的的极极限限形形式式3 4,1 2 6, ,比比较较或或比比较较的的极极限限形形式式-一一般般莱莱布布尼尼兹兹公公式式1nnu 收收敛敛1nnu 绝绝对对收收敛敛1nnu 发发散散1nnu 的的敛敛

17、散散性性重重新新判判定定6lim0,nu 发发散散5判断任意项级数敛散性的方法判断任意项级数敛散性的方法第22页/共29页判断级数敛散性的步骤判断级数敛散性的步骤1.1.判定级数类型判定级数类型-任意项级数或正项级数任意项级数或正项级数2.2.若为正项级数若为正项级数, ,采用正项级数的判别法采用正项级数的判别法1).1).比值判别法比值判别法2).2).比较判别法的极限形式比较判别法的极限形式3.3.若为任意项级数若为任意项级数, ,采用任意项级数的比值判别法采用任意项级数的比值判别法. .作业:作业:pp255,12.(1)()(2 )()(10) (13)收敛或发散收敛或发散绝对收敛或条

18、件收敛或发散绝对收敛或条件收敛或发散第23页/共29页11( 1)1.ln(1nnn )132( 1)3.2nnnn 212( 1)24.!nnnn 2( 1)2.lnnnnn 2(1)5.( 1)(1)(2)nnn nnn 15142( 1)6.( 1)nnnn 111( 1)11.ln(1ln(1nnnnn 解解 考考查查)11ln(11nn )111nn 且且发发散散,11( 1)ln(1nnn 所所以以发发散散. .)11( 1)ln(1nnn 考考查查)111ln(1ln(2)nnuunn )1lim0ln(1nn )11( 1).ln(1nnn 收收敛敛,且且为为条条件件收收敛敛)第24页/共29页22( 1)12.lnlnnnnnnnn 解解 考考查查n1lnlim1nnn nlimlnnnn n1limln1nn 1 21nn 且且发发散散2( 1)lnnnnn 所所以以发发散散。2( 1)()lnnnnn 考考查查见见前前面面例例题题,收收敛敛 于于是是条条件件收收敛敛。第25页/共29页1()lnxx )2(0 x解解1,ln

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论