版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、成 绩 评 定 表学生姓名 班级学号 专 业信息与计算科学课程设计题目 NBA球员技术统计分析报告评语组长签字:成绩日期 20 年 月 日 课程设计任务书学 院理学院专 业信息与计算科学学生姓名 班级学号1109010114课程设计题目 NBA球员技术统计分析报告实践教学要求与任务:设计要求技术参数:1、熟练掌握SPSS软件的操作方法;2、根据所选题目及调研所得数据,运用数据分析知识,建立适当的数学模型;3、运用SPSS软件,对模型进行求解,对结果进行分析并得出结论; 4、掌握利用数据分析理论知识解决实际问题的一般步骤。设计任务:1、查阅相关资料,找到NBA球员技术的相关指标,获得相关数据;2
2、、利用数据分析的理论,建立线性回归模型,以及对其进行主成分分析;3、利用SPSS软件求解,并给出正确的结论。工作方案与进度安排:第一天第二天 学习使用SPSS软件并选题 第三天第四天 查阅资料 第五天第六天 建立数学模型 第七天第九天 上机求解并完成论文第十天 辩论指导教师: 201 年 月 日专业负责人:201 年 月 日学院教学副院长:201 年 月 日摘 要数据分析析的主要应用有两方面,一是寻求根本结构,简化观测系统,将具有错综复杂关系的对象变量或样品综合为少数几个因子不可观测的,相互独立的随机变量,以再现因子与原变量之间的内在联系;二是用于分类,对个变量或个样品进行分类。聚类分析一般有
3、两种类型,即按样品聚类或按变量指标聚类,其根本思想是通过定义样品或变量间“接近程度的度量,将“相近的样品或变量归为一类。本文利用利用数据分析中的因子分析和聚类分析对多个变量数据进行了分析。就是分析和处理数据的理论与方法,数据分析中提出了广泛的多元数据分析的统计方法,包括线性回归分析、方差分析、因子分析、主成分分析、典型相关分析、判别分析、聚类分析等。关键词:spss软件;聚类分析;因子分析;线性规划目 录 1 数据分析的任务和目的11.1 问题的背景11.2 任务和目的12 数据的搜集与整理22.1 数据的来源22.2 数据的处理23 利用SPSS软件对结果进行分析3总 结13参考文献141
4、数据分析的任务和目的1.1 问题的背景 一年一度的NBA赛季让全世界的篮球迷为之疯狂,NBA赛事之所以如此受欢送,最主要的原因在于NBA球员高超的球技。球队中灵魂人物的个人发挥能够直接影响其球队的成败。因而对他们的技术统计与分析是一件十分重要的事情。众所周知,科比-布莱恩特和阿伦-艾弗森是深受大家喜爱的两位球员,两位球员在赛季的发挥也在一定程度上影响着两队的战绩。因此,通过两位球员在以往的赛季中的发挥及表现,可以大概的预测两人的得分及表现,为NBA相关的商业活动和广阔球迷提供数据上的参考。1.2 任务和目的 1、频数分析对两人平均每场上场时间进行频数分析 2、根本描述统计量用根本描述统计量的计
5、算结果对两人技术进行分析比拟 3、单样本t检验检验科比-布莱恩特和阿伦-艾弗森平均每场犯规次数的均值是否为2.7 4、两独立样本t检验科比-布莱恩特和阿伦-艾弗森平均每场犯规次数比拟 5、 单样本非参数假设检验检验科比-布莱恩特平均每场进攻次数与首发的关系根本是否为1:1:10:10:10:10:10:10:10:10:2 6、单样本非参数假设检验(检验科比-布莱恩特和阿伦-艾弗森平均每场盖帽次数总体的分布是否为正态分布) 7、 单样本非参数假设检验(检验科比-布莱恩特在某段时间内平均每场得分是否持续正常) 8、单因素方差分析(用单因素方差分析,分别分析科比-布莱恩特和阿伦-艾弗森平均每场防守
6、次数对平均每场得分有无显著影响) 9、相关分析研究平均每场三分球命中率与平均每场得分之间是否具有较强的线性关系 10、偏相关分析以平均每场失误次数为控制变量,研究平均每场罚球命中率与平均每场得分的偏相关关系 11、线性回归分析用逐步筛选法找科比-布莱恩特的平均每场得分的线性回归方程 12、曲线回归分析用曲线回归分析法分析科比-布莱恩特的平均每场得分2 数据的搜集与整理2.1 数据的来源?NBA球员科比-布莱恩特和阿伦-艾弗森11个赛季技术统计表?下载自NBA中文官方网站,具有可信度。2.2 数据的处理定义视图数据视图:3 利用SPSS软件对结果进行分析1频数分析对两人平均每场上场时间进行频数分
7、析 数据文件中增加一个变量scsj。输出1输出2分析:从输出1中看出,阿伦-艾弗森平均每场上场时间在10-40分钟的频数为1,在40-50分钟的频数为10;科比-布莱恩特平均每场上场时间在10-40分钟的频数为7,在40-50分钟的频数为4;两人平均每场上场时间在10-40分钟的频数为8,在40-50分钟的频数为14。 从输出2中看出,交叉分组下的频数分析卡方检验结果的相伴概率为0.008,小于显著性水平0.05,故拒绝原假设,认为两人的平均每场上场时间存在显著性差异。2 根本描述统计量用根本描述统计量的计算结果对两人技术进行分析比拟实现按NBA球员拆分,输出结果放在同一张表中。输出3分析:从
8、输出3中看出,科比-布莱恩特的平均每场投篮命中率、平均每场三分球命中率和平均每场罚球命中率的均值均比阿伦-艾弗森高,但标准差有高有底,说明在投篮方面科比-布莱恩特比阿伦-艾弗森发挥出色,但稳定程度上下不定。均值的统计误差均小于0.05比拟小,说明数据没有不均衡现象,说明两人的发挥都比拟稳定。3 单样本t检验检验科比-布莱恩特和阿伦-艾弗森平均每场犯规次数的均值是否为2.7实现按NBA球员拆分,输出结果放在同一张表中。输出4分析:从输出4中得,阿伦-艾弗森单样本假设的相伴概率为0.001,小于显著性水平0.05,故拒绝原假设,认为阿伦-艾弗森平均每场犯规次数的均值与2.7有显著性差异;科比-布莱
9、恩特单样本假设的相伴概率为0.773,大于显著性水平0.05,故接受原假设,认为科比-布莱恩特平均每场犯规次数的均值与2.7无显著性差异。4 两独立样本t检验科比-布莱恩特和阿伦-艾弗森平均每场犯规次数比拟输出5分析:从输出5中看出,两独立样本F检验结果的相伴概率为0.019,小于显著性水平0.05,故拒绝原假设,认为阿伦-艾弗森与科比-布莱恩特平均每场犯规次数的方差有显著性差异;两独立样本t检验结果的相伴概率为0.003,小于显著性水平0.05,故拒绝原假设,认为阿伦-艾弗森与科比-布莱恩特平均每场犯规次数的均值有显著性差异。5单样本非参数假设检验检验科比-布莱恩特平均每场进攻次数与首发的关
10、系根本是否为1:1:10:10:10:10:10:10:10:10:2输出6输出7分析:从输出7中看出,非参数假设检验卡方分布的相伴概率为0.505,大于显著性水平0.05,故接受假设,认为样本来自的总体分布与理论分布无显著差异,即科比-布莱恩特与首发的关系根本是为1:1:10:10:10:10:10:10:10:10:2。6 单样本非参数假设检验(检验科比-布莱恩特和阿伦-艾弗森平均每场盖帽次数总体的分布是否为正态分布)实现按NBA球员拆分,输出结果放在同一张表中。输出8分析:从输出8看出,科比-布莱恩特的平均每场盖帽次数非参数检验结果的相伴概率为0.945,大于显著性水平0.05,故接受原
11、假设,认为科比-布莱恩特的平均每场盖帽次数服从正态分布;阿伦-艾弗森的平均每场盖帽次数非参数检验结果的相伴概率为0.709,大于显著性水平0.05,故接受原假设,认为科比-布莱恩特的平均每场盖帽次数服从正态分布。7单样本非参数假设检验(检验科比-布莱恩特在某段时间内平均每场得分是否持续正常)输出9分析:从输出9看出,随机性检验结果的相伴概率为0.210,大于显著性水平0.05,故接受假设,认为科比-布莱恩特平均每场得分是随机的。8单因素方差分析(用单因素方差分析,分别分析科比-布莱恩特和阿伦-艾弗森平均每场防守次数对平均每场得分有无显著影响)输出10分析:从输出10中看出,科比-布莱恩特单因素
12、方差分析结果的相伴概率为0.056,大于显著性水平0.05,故接受假设,认为科比-布莱恩特的平均每场防守次数对平均每场得分无显著影响;阿伦-艾弗森单因素方差分析结果的相伴概率为0.374,大于显著性水平0.05,故接受假设,认为科比-布莱恩特的平均每场防守次数对平均每场得分无显著影响。9相关分析研究平均每场三分球命中率与平均每场得分之间是否具有较强的线性关系输出11输出12分析:从输出11中看出,平均每场三分球命中率与平均每场得分之间不具有较强的线性关系;从输出12中看出,相关分析的相伴概率为0.329,大于显著性水平0.05,故接受原假设,认为平均每场三分球命中率与平均每场得分之间不具有较强
13、的线性关系。两种方法得到结果一致。10 偏相关分析以平均每场失误次数为控制变量,研究平均每场罚球命中率与平均每场得分的偏相关关系- - - P A R T I A L C O R R E L A T I O N C O E F F I C I E N T S - - -Controlling for. V15 V17 V9V17 1.0000 .3626 ( 0) ( 19) P= . P= .106 ( 19) ( 0) P= .106 P= .(Coefficient / (D.F.) / 2-tailed Significance)" . " is printed i
14、f a coefficient cannot be computed输出13分析:从输出13中看出,偏相关分析结果的相伴概率为0.106,大于显著性水平0.05,故接受假设,认为以平均每场失误次数为控制变量,平均每场罚球命中率与平均每场得分的偏相关关系不显著。11 线性回归分析用逐步筛选法找科比-布莱恩特的平均每场得分的线性回归方程输出14输出15输出16输出17输出18分析:从输出14中看出,本次多元分析回归分析采用的是逐步筛选法,且回归系数显著性F检验的相伴概率值小于0.05的自变量引入了回归方程,大于0.1的自变量剔除了回归方程。自变量进入回归方程的次序是:平均每场上场时间。从输出18中
15、看出,科比-布莱恩特的平均每场得分的最终线性回归方程为平均每场得分=0.839*平均每场上场时间+6.612。12曲线回归分析用曲线回归分析法分析科比-布莱恩特的平均每场得分MODEL: MOD_1._Independent: V7 Dependent Mth Rsq d.f. F Sigf b0 b1 b2 b3 V17 QUA .770 8 13.43 .003 -4386.5 19633.2 -21819 9 V17 CUB .771 8 13.45 .003 -2962.2 9973.17 -16414Notes:9 Tolerance limits reached; some dep
16、endent variables were not entered. 输出19输出20分析:从输出19中看出,线性模型的相伴概率为0.117,大于显著性水平0.05,故接受原假设,认为线性模型的方程不显著;二次曲线与三次曲线的相伴概率均为0.003,小于显著性水平0.05,故拒绝原假设,认为线性模型的方程显著;且三次的曲线拟合度最高,因此选定三次曲线模型。具体模型是: 平均每场得分=+*平均每场投篮命中率-16414*平均每场投篮命中率3 总 结经过这次的大作业的锻炼,是我对这学期所学到的数据分析方法和对SPSS的操作有了更加深刻的理解和认识,在课设的过程中不断有问题出现,又不断地查资料或请教老师同学的情况下,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025购房借款合同书范文
- 跨学科知识联合的未来发展趋势
- 包鱼塘合同范例
- 汕头大学《运作管理》2023-2024学年第一学期期末试卷
- 山东电力安装合同范例
- 2024至2030年电动铅笔刨电机项目投资价值分析报告
- 售后网合作合同范例格式
- 场地承包合同范例
- 归侨侨眷食品救助合同范例
- 煤炭装袋销售合同范例
- 企业发展未来5年规划
- 2024-2025学年四年级科学上册第一单元《声音》测试卷(教科版)
- 四川省成都市2023-2024学年七年级上学期期末数学试题(含答案)
- 2024年交管12123学法减分考试题库附完整答案(网校专用)
- L04小尺寸MOSFET的特性
- 《昆虫记》阅读题及答案
- 气体灭火系统验收表1
- 千分尺校验记录表(参照模板)
- (完整版)第二章-铸铁的结晶及组织形成课件
- SparkCCD6000操作规程操作版分解
- EN779-2012一般通风过滤器——过滤性能测定(中文版)
评论
0/150
提交评论