版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、乘法原理知识内容1基本计数原理加法原理分类计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种方法,在第类办法中有种不同的方法那么完成这件事共有种不同的方法又称加法原理乘法原理分步计数原理:做一件事,完成它需要分成个子步骤,做第一个步骤有种不同的方法,做第二个步骤有种不同方法,做第个步骤有种不同的方法那么完成这件事共有种不同的方法又称乘法原理加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理如果完成一件事的各个步骤是相互了解的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分
2、步计数原理分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用2 排列与组合排列:一般地,从个不同的元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(其中被取的对象叫做元素)排列数:从个不同的元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示排列数公式:,并且全排列:一般地,个不同元素全部取出的一个排列,叫做个不同元素的一个全排列的阶乘:正整数由到的连乘积,叫作的阶乘,用表示规定:组合:一般地,从个不同元素中,任意取出个元素并成一组
3、,叫做从个元素中任取个元素的一个组合组合数:从个不同元素中,任意取出个元素的所有组合的个数,叫做从个不同元素中,任意取出个元素的组合数,用符号表示组合数公式:,并且组合数的两个性质:性质1:;性质2:(规定)排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清
4、楚,不重不漏3排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法4捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列5插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空6插板法:个相同元素,分成组,每组至少一个的分组问题把个元素排成一排,从个空中选个空,各插一个隔板,有7分组、分配法:分组问题(分成几堆,无序)有等分、不等分、部分等分之别一般地平均分成堆(组),必须除以!,如果有堆(组)元素个数相等,必须除以!8错位法:编号为1至的个小球放入编号为1到的个盒子里,每个盒子放一个小球,要求小球与盒子的
5、编号都不同,这种排列称为错位排列,特别当,3,4,5时的错位数各为1,2,9,44关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题1排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素;位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和
6、遗漏;最后列出式子计算作答2具体的解题策略有:对特殊元素进行优先安排;理解题意后进行合理和准确分类,分类后要验证是否不重不漏;对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;对于正面考虑太复杂的问题,可以考虑反面对于一些排列数与组合数的问题,需要构造模型典例分析乘法原理【例1】 公园有个门,从一个门进,一个门出,共有_种不同的走法【例2】 将个不同的小球放入个盒子中,则不同放法种数有_【例3】 如果在一周内(周一至周日)安排三所学校的学生参观某展
7、览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余两所学校均只参观一天,那么不同的安排方法共有 种【例4】 高二年级一班有女生人,男生人,从中选取一名男生和一名女生作代表,参加学校组织的调查团,问选取代表的方法有几种【例5】 六名同学报名参加三项体育比赛,每人限报一项,共有多少种不同的报名结果?【例6】 六名同学参加三项比赛,三个项目比赛冠军的不同结果有多少种?【例7】 用,组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且和相邻,这样的六位数的个数是_(用数字作答)【例8】 从集合中任选两个元素作为椭圆方程中的和,则能组成落在矩形区域且内的椭圆个数为()A B CD【例
8、9】 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为,值域为的“同族函数”共有( )A个 B个C个D个【例10】 某银行储蓄卡的密码是一个位数码,某人采用千位、百位上的数字之积作为十位和个位上的数字(如)的方法设计密码,当积为一位数时,十位上数字选,并且千位、百位上都能取这样设计出来的密码共有( )A个 B个 C个 D个【例11】 从集合中,选出个数组成子集,使得这个数中的任何两个数之和不等于,则取出这样的子集的个数为( )A B C D【例12】 若、是整数,且,则以为坐标的不同的点共有多少个?【例13】 用,这个数字:可以组成_个数字不重复的三位数可以组成_个数字允许重复的三位数【例1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度离婚案件中涉及2024年购置车辆分割协议书3篇
- 2024年远程医疗服务系统搭建合同
- 2025年度装载机租赁与售后服务合同3篇
- 2025年度智慧城市安防监控系统工程合同书3篇
- 2024年物业绿化维护合同(适用于物业绿化养护)3篇
- 求一个数比另一个数多几(少几)教学反思
- 高级财务会计历年核算题(分类)
- 人民日报青春摘抄(高中作文素材)
- 华南农业大学珠江学院《数据库技术基础(ACCESS)》2023-2024学年第一学期期末试卷
- 培黎职业学院《Java语言程序设计A》2023-2024学年第一学期期末试卷
- 江苏某小区园林施工组织设计方案
- 勘察工作质量及保证措施
- 体外膜肺氧合(ECMO)并发症及护理
- 垫江县中医院2018年11月份临床技能中心教学设备招标项目招标文件
- 排放源统计(环统)年报填报指南
- 反射疗法师理论考试复习题及答案
- 房地产销售主管岗位招聘笔试题及解答(某大型国企)2025年
- 心电图并发症预防及处理
- 重庆市七中学2023-2024学年数学八上期末统考模拟试题【含解析】
- 检验科lis系统需求
- 中东及非洲空气制水机行业现状及发展机遇分析2024-2030
评论
0/150
提交评论