![第八章1多元函数微分学相关概念ppt课件_第1页](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/b839cb97-6da3-4270-b3b0-00e8bbcc11c3/b839cb97-6da3-4270-b3b0-00e8bbcc11c31.gif)
![第八章1多元函数微分学相关概念ppt课件_第2页](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/b839cb97-6da3-4270-b3b0-00e8bbcc11c3/b839cb97-6da3-4270-b3b0-00e8bbcc11c32.gif)
![第八章1多元函数微分学相关概念ppt课件_第3页](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/b839cb97-6da3-4270-b3b0-00e8bbcc11c3/b839cb97-6da3-4270-b3b0-00e8bbcc11c33.gif)
![第八章1多元函数微分学相关概念ppt课件_第4页](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/b839cb97-6da3-4270-b3b0-00e8bbcc11c3/b839cb97-6da3-4270-b3b0-00e8bbcc11c34.gif)
![第八章1多元函数微分学相关概念ppt课件_第5页](http://file3.renrendoc.com/fileroot_temp3/2021-12/18/b839cb97-6da3-4270-b3b0-00e8bbcc11c3/b839cb97-6da3-4270-b3b0-00e8bbcc11c35.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 多元微积分的概念、理论、方法是一元微多元微积分的概念、理论、方法是一元微积分中相应概念、理论、方法的推广和发展,积分中相应概念、理论、方法的推广和发展,它们既有相似之处概念及处理问题的思想方它们既有相似之处概念及处理问题的思想方法又有许多本质的不同,要善于进行比较,法又有许多本质的不同,要善于进行比较,既要认识到它们的共同点和相互联系,更要注既要认识到它们的共同点和相互联系,更要注意它们的区别,研究新情况和新问题,深刻理意它们的区别,研究新情况和新问题,深刻理解,融会贯通。解,融会贯通。 多元函数微分学多元函数微分学 在上册中,我们讨论的是一元函数微积分,但实际问题中常会遇到依赖于两个以上自
2、变量的函数多元函数,也提出了多元微积分问题。 重点重点 多元函数基本概念,偏导数,全微分,多元函数基本概念,偏导数,全微分,复合函数求导,隐函数求导,偏导数的几何复合函数求导,隐函数求导,偏导数的几何应用,多元函数极值。应用,多元函数极值。难点难点复合函数求导,多元函数极值。复合函数求导,多元函数极值。 函数的微分法从一元函数发展到函数的微分法从一元函数发展到 二元函数本质上要出现一些新东西,但二元函数本质上要出现一些新东西,但 从二元函数到二元以上函数则可以类推,从二元函数到二元以上函数则可以类推, 因此这里基本上只讨论二元函数。因此这里基本上只讨论二元函数。掌握多元函数基本概念,会表示定义
3、域,掌握多元函数基本概念,会表示定义域,了解二元极限、连续了解二元极限、连续深刻理解二元函数偏导数,能熟练求出一深刻理解二元函数偏导数,能熟练求出一阶和高阶偏导数,阶和高阶偏导数,掌握全微分概念掌握全微分概念会求复合函数偏导数,掌握隐函数的求会求复合函数偏导数,掌握隐函数的求导方法,导方法,会求曲线的切线、法平面,曲面的切平会求曲线的切线、法平面,曲面的切平面和法线,面和法线,会求多元函数极值会求多元函数极值基本要求基本要求(1邻域邻域 设设),(000yxP是是xoy平面上的一个点,平面上的一个点, 是某是某一正数,与点一正数,与点),(000yxP距离小于距离小于 的点的点),(yxP的全
4、体,称为点的全体,称为点0P的的 邻域,记为邻域,记为),(0 PU, ),(0 PU |0PPP .)()(| ),(2020 yyxxyx 0P(2区域区域.)(的的内内点点为为则则称称,的的某某一一邻邻域域一一个个点点如如果果存存在在点点是是平平面面上上的的是是平平面面上上的的一一个个点点集集,设设EPEPUPPE 一、多元函数的概念一、多元函数的概念.为为开开集集则则称称的的点点都都是是内内点点,如如果果点点集集EE例如,例如,41),(221 yxyxE即为开集即为开集EP 的的边边界界点点为为),则则称称可可以以不不属属于于,也也本本身身可可以以属属于于的的点点(点点也也有有不不属
5、属于于的的点点,于于的的任任一一个个邻邻域域内内既既有有属属如如果果点点EPEEPEEP的边界的边界的边界点的全体称为的边界点的全体称为 EE是连通的是连通的开集开集,则称,则称且该折线上的点都属于且该折线上的点都属于连结起来,连结起来,任何两点,都可用折线任何两点,都可用折线内内是开集如果对于是开集如果对于设设DDDDEP 例如,例如,.41| ),(22 yxyx开开区区域域连连同同它它的的边边界界一一起起称称为为闭闭区区域域.例如,例如,.41| ),(22 yxyxxyoxyo则则称称为为无无界界点点集集为为有有界界点点集集,否否成成立立,则则称称对对一一切切即即,不不超超过过间间的的
6、距距离离与与某某一一定定点点,使使一一切切点点如如果果存存在在正正数数对对于于点点集集EEPKAPKAPAEPKE 连通的开集称为区域或开区域连通的开集称为区域或开区域 41 | ),(22 yxyx有界闭区域;有界闭区域;0| ),( yxyx无界开区域无界开区域(3聚点聚点 设设 E 是是平平面面上上的的一一个个点点集集,P 是是平平面面上上的的一一个个点点,如如果果点点 P 的的任任何何一一个个邻邻域域内内总总有有无无限限多多个个点点属属于于点点集集 E,则则称称 P 为为 E 的的聚聚点点.xyo 内点一定是聚点;内点一定是聚点; 边界点可能是聚点;边界点可能是聚点;例例10| ),(
7、22 yxyx(0,0)既是边界点也是聚点既是边界点也是聚点 点集点集E的聚点可以属于的聚点可以属于E,也可以不属于,也可以不属于E例如例如,10| ),(22 yxyx(0,0) 是聚点但不属于集合是聚点但不属于集合例如例如,1| ),(22 yxyx边界上的点都是聚点也都属于集合边界上的点都是聚点也都属于集合(4n维空间维空间 设设n为取定的一个自然数,我们称为取定的一个自然数,我们称n元数组元数组),(21nxxx的全体为的全体为n维空间,而每个维空间,而每个n元数元数组组),(21nxxx称为称为n维空间中的一个点,数维空间中的一个点,数ix称为该点的第称为该点的第i个坐标个坐标. n
8、维空间的记号为维空间的记号为;nR n维空间中两点间距离公式维空间中两点间距离公式 ),(21nxxxP),(21nyyyQ.)()()(|2222211nnxyxyxyPQ 特殊地当特殊地当 时,便为数轴、平面、时,便为数轴、平面、空间两点间的距离空间两点间的距离3, 2, 1 n n维空间中邻域、区域等概念维空间中邻域、区域等概念邻域:邻域: nRPPPPPU ,|),(00 内点、边界点、区域、聚点等概念也可定义内点、边界点、区域、聚点等概念也可定义设两点为设两点为(5二元函数的定义二元函数的定义 设设D是是平平面面上上的的一一个个点点集集,如如果果对对于于每每个个点点DyxP ),(,
9、变变量量z按按照照一一定定的的法法则则总总有有确确定定的的值值和和它它对对应应,则则称称z是是变变量量yx,的的二二元元函函数数,记记为为),(yxfz (或或记记为为)(Pfz ). . 类似地可定义三元及三元以上函数类似地可定义三元及三元以上函数当当2 n时时,n元元函函数数统统称称为为多多元元函函数数. 多多元元函函数数中中同同样样有有定定义义域域、值值域域、自自变变量量、因因变变量量等等概概念念.例例1 1 求求 的定义域的定义域222)3arcsin(),(yxyxyxf 解解 013222yxyx 22242yxyx所求定义域为所求定义域为., 42| ),(222yxyxyxD
10、(6) 二元函数二元函数 的图形的图形),(yxfz 设函数设函数),(yxfz 的定义域为的定义域为D,对于任意,对于任意取定的取定的DyxP ),(,对应的函数值为,对应的函数值为),(yxfz ,这样,以,这样,以x为横坐标、为横坐标、y为纵坐为纵坐标、标、z为竖坐标在空间就确定一点为竖坐标在空间就确定一点),(zyxM,当当x取遍取遍D上一切点时,得一个空间点集上一切点时,得一个空间点集),(),(| ),(Dyxyxfzzyx ,这个点集称,这个点集称为二元函数的图形为二元函数的图形.(如右图)(如右图)二元函数的图形通二元函数的图形通常是一张曲面常是一张曲面.定 义定 义 1 1
11、设 函 数设 函 数),(yxfz 的 定 义 域 为的 定 义 域 为),(,000yxPD是其聚点,如果对于任意给定的是其聚点,如果对于任意给定的正数正数 ,总存在正数,总存在正数 ,使得对于适合不等式,使得对于适合不等式 20200)()(|0yyxxPP的 一 切的 一 切点,都有点,都有 |),(|Ayxf成立,则称成立,则称 A A 为函数为函数),(yxfz 当当0 xx ,0yy 时的极限,时的极限,记为记为 Ayxfyyxx ),(lim00 (或(或)0(),( Ayxf这里这里|0PP ).二、多元函数的极限二、多元函数的极限(1定义中定义中 的方式可能是多种多样的方式可
12、能是多种多样的,方向可能任意多,路径可以是千姿百态的,的,方向可能任意多,路径可以是千姿百态的,所谓极限存在是指当动点从四面八方以可能有所谓极限存在是指当动点从四面八方以可能有的任何方式和任何路径趋于定点时,函数都趋的任何方式和任何路径趋于定点时,函数都趋于同一常数。于同一常数。这是产生本质差异的根本原这是产生本质差异的根本原因。因。0PP (2二元函数的极限也叫二重极限二元函数的极限也叫二重极限);,(lim00yxfyyxx(3二元函数的极限运算法则与一元函数类似二元函数的极限运算法则与一元函数类似如局部有界性、局部保号性、夹逼准则、无穷小、如局部有界性、局部保号性、夹逼准则、无穷小、等价
13、无穷小代换等,建议自行复习,写出有关结论等价无穷小代换等,建议自行复习,写出有关结论以巩固和加深理解。以巩固和加深理解。说明:说明:01sin)(lim222200 yxyxyx证证01sin)(2222 yxyx22221sinyxyx 22yx , 0 , 当当 时,时, 22)0()0(0yx 01sin)(2222yxyx原结论成立原结论成立例例2 2 求证求证 例例3 3 求极求极限限 .)sin(lim22200yxyxyx 解解22200)sin(limyxyxyx ,)sin(lim2222200yxyxyxyxyx 其中其中yxyxyx2200)sin(limyxu2 uuu
14、sinlim0, 1 222yxyx x21 , 00 x. 0)sin(lim22200 yxyxyx例例4 4 证明证明 不存不存在在 26300limyxyxyx 证证取取,3kxy 26300limyxyxyx 6263303limxkxkxxkxyx ,12kk 其值随其值随k的不同而变化,的不同而变化,故极限不存在故极限不存在确定极限不存在的方法:确定极限不存在的方法:(1) 令令),(yxP沿沿kxy 趋趋向向于于),(000yxP,若若极极限限值值与与k有有关关,则则可可断断言言极极限限不不存存在在;(2) 找找两两种种不不同同趋趋近近方方式式,使使),(lim00yxfyyx
15、x存存在在,但但两两者者不不相相等等,此此时时也也可可断断言言),(yxf在在点点),(000yxP处处极极限限不不存存在在 定义定义 2 2 设设n元函数元函数)(Pf的定义域为点集的定义域为点集0, PD是其聚点,如果对于任意给定的正数是其聚点,如果对于任意给定的正数 ,总 存 在 正 数总 存 在 正 数 , 使 得 对 于 适 合 不 等 式, 使 得 对 于 适 合 不 等 式 |00PP的 一 切 点的 一 切 点DP , 都 有, 都 有 |)(|APf成立,则称成立,则称 A A 为为n元函数元函数)(Pf当当0PP 时的极限,记为时的极限,记为 APfPP )(lim0. .
16、n元元函函数数的的极极限限利用点函数的形式有利用点函数的形式有 设设n元函数元函数)(Pf的定义域为点集的定义域为点集0, PD是其聚点且是其聚点且DP 0,如果,如果)()(lim00PfPfPP 则称则称n元函数元函数)(Pf在点在点0P处连续处连续. . 设设0P是是函函数数)(Pf的的定定义义域域的的聚聚点点,如如果果)(Pf在在点点0P处处不不连连续续,则则称称0P是是函函数数)(Pf的的间间断断点点.例例5 5 讨论函数讨论函数 )0 , 0(),(, 0)0 , 0(),(,),(2233yxyxyxyxyxf在在(0,0)处的连续性处的连续性三、多元函数的连续性三、多元函数的连
17、续性解解取取,cos x sin y)0 , 0(),(fyxf )cos(sin33 2 , 0 ,2 当当 时时 220yx 2)0 , 0(),(fyxf),0 , 0(),(lim)0,0(),(fyxfyx 故函数在故函数在(0,0)处连续处连续.例例6 6 讨论函数讨论函数 0, 00,),(222222yxyxyxxyyxf在在(0,0)的连续性的连续性解解取取kxy 2200limyxxyyx 22220limxkxkxkxyx 21kk 其值随其值随k的不同而变化,的不同而变化,极限不存在极限不存在故函数在故函数在(0,0)处不连续处不连续闭区域上连续函数的性质闭区域上连续函
18、数的性质(1最大值和最小值定理最大值和最小值定理 在有界闭区域在有界闭区域D D上的多元连续函数,在上的多元连续函数,在D D上至少取得它的最大值和最小值各一次上至少取得它的最大值和最小值各一次(2介值定理介值定理 在有界闭区域在有界闭区域D D上的多元连续函数,如上的多元连续函数,如果在果在D D上取得两个不同的函数值,则它在上取得两个不同的函数值,则它在D D上上取得介于这两值之间的任何值至少一次取得介于这两值之间的任何值至少一次多元初等函数:由多元多项式及基本初等函数多元初等函数:由多元多项式及基本初等函数经过有限次的四则运算和复合步骤所构成的可经过有限次的四则运算和复合步骤所构成的可用
19、一个式子所表示的多元函数叫多元初等函数用一个式子所表示的多元函数叫多元初等函数一切多元初等函数在其定义区域内是连续的一切多元初等函数在其定义区域内是连续的定义区域是指包含在定义域内的区域或闭区域定义区域是指包含在定义域内的区域或闭区域).()(lim)()()()(lim00000PfPfPPfPfPPfPfPPPP 处处连连续续,于于是是点点在在的的定定义义域域的的内内点点,则则是是数数,且且是是初初等等函函时时,如如果果一一般般地地,求求多元函数的定义多元函数的定义多元函数极限的概念多元函数极限的概念(注意趋近方式的任意性)(注意趋近方式的任意性)多元函数连续的概念多元函数连续的概念闭区域
20、上连续函数的性质闭区域上连续函数的性质四、小结四、小结 若点若点),(yx沿着无数多条平面曲线趋向于沿着无数多条平面曲线趋向于点点),(00yx时,函数时,函数),(yxf都趋向于都趋向于 A,能否,能否断定断定Ayxfyxyx ),(lim),(),(00?思考题思考题不能不能.例例,)(),(24223yxyxyxf )0 , 0(),(yx取取,kxy 2442223)(),(xkxxkxkxxf 00 x但是但是 不存在不存在.),(lim)0,0(),(yxfyx原因为若取原因为若取,2yx 244262)(),(yyyyyyf .41思考题解答思考题解答练练 习习 题题一一、 填填空空题题: : 1 1、 若若yxxyyxyxftan),(22 , ,则则),(tytxf= =_ _ _ _ _. . 2 2、 若若xyyxyxf2),(22 , ,则则 )3, 2(f_ _ _ _ _ _ _
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度交通安全知识普及与驾驶技能培训合同
- 企业并购居间合同委托书
- 二零二五年度办公室劳动合同地址确认及员工离职补偿协议
- 三农田灌溉方案与实施手册
- 汽车维修保养规范手册
- 医疗器械产品采购合同
- 石材购销合同补充合同
- 合作收购不良资产协议
- 人力资源管理劳动法律法规遵守作业指导书
- 企业并购交易操作指导书
- 空调维保应急预案
- 2023年高考语文全国乙卷作文范文及导写(解读+素材+范文)课件版
- 模块建房施工方案
- 多域联合作战
- 生理产科学-正常分娩期的护理(助产学课件)
- 煤场用车辆倒运煤的方案
- PPK计算模板完整版
- 居民自建房经营业态不超过三种承诺书
- 河南省陕州区王家后乡滹沱铝土矿矿产资源开采与生态修复方案
- 中国高血压临床实践指南(2022版)解读
- 最常用汉字5000个
评论
0/150
提交评论