版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、管道元件变形的几种基本形式管道元件变形的基本形式有拉伸(压缩)、剪切、扭转和弯曲共四种,受多种载荷作用的管子变形都可视为这四种基本变形形式的组合。因此可以说,管道元件的基本变形形式是解决复杂应力状态问题的基础。在了解复杂应力状态下的管道应力分析之前,有必要先了解一下四种基本变形形式。(一)拉伸和压缩管子的拉伸和压缩是由大小相等、方向相反、作用线与管道中心轴线重合的一对外力引起的管子变形形式。其变形特点是管子沿中心轴线方向被拉伸或被压缩,如图6-1所示:图6-1 管子的拉伸与压缩变形根据圣维南原理可知,管子的两端部沿截面上的力不一定均匀分布,但远离端部的任一横截面上的内力是均匀分布的。假想将管道
2、元件在m-m处切开,那么m-m截面上的内力是均匀的。根据力的平衡法则可知此时N=F。根据应力的定义可以得到m-m截面上内力N与应力的关系为:平面假设认为,对于各向同性材料,此时截面上的应力是均匀分布的,实验证明也如此。故有:N=.A由于此时N=F,故有:F=.A, 或者 (a) 一般情况下,管道元件受拉时,其外力F和应力为正,受压时,F和为负。对管子来说,设管子外径为D,内径为d,故其横截面积为:(b) 将式(b)代入式(a)可得:(6-1) 式6-1即为管道元件受拉压时的强度校核公式。求解该式的过程称做管道元件的强度校核过程。在已知力F和材料许用应力的情况下,可以通过式6-1变换求解管道元件
3、需要的截面积大小,即。 这一过程称为管子的设计过程。同理,在已知管道元件尺寸和材料许用应力的情况下,也可以通过式6-1变换求解最大允许载荷,即F=.A。这一过程称为管道元件的载荷条件限制过程。值得一提的是,管道元件受压缩时,在不考虑失稳的情况下,其弹性模量E和屈服极限s与拉伸时相同,但材料屈服后,管子横截面积会不断增加,其抗压能力也将不断提高。因此,研究弹性材料的压缩强度破坏无太大工程意义,而此时较多研究的是其刚度破坏。对于单纯拉压变形,无须用物理方程和几何方程即可求解,故它是比较简单的变形形式。(二)剪切管子的剪切变形是由大小相等、方向相反、作用线垂直于管轴且距离很近的一对力引起的管子变形形
4、式。其变形特点表现为受剪管子的两部分沿力的作用方向发生相对错动,见图6-2所示。图6-2 管子的剪切变形与管道的拉伸和压缩相似,可以近似地认为在管子远离端部的任一截面上的剪力(内力)是沿截面均匀分布的,且其内(剪)力与外力大小相等、方向相反,即F=N。同理,可认为其剪应力沿截面也均匀分布,且有:或者写成:(6-1) 式6-2即为管道元件受剪切时的强度校核公式。同样,对式6-2进行变换,可以进行管子受剪情况下的截面积计算和确定许可载荷。一般情况下,材料的许用剪切应力很难查到,但试验证明材料的许用剪切应力与许用拉伸应力存在下列近似关系:对塑性材料:=(0.60.8)对脆性材料:=(0.61.0)纯
5、剪切变形也无须用几何方程和物理方程即可求解。(三)扭转管子的扭转变形是由大小相等、方面相反、作用面垂直于管子轴线的两个力矩引起的管子变形形式。其变形特点表现为管道元件的任意两个横载面绕管子的中心轴线发生相对转动,见图6-3所示:图6-3 管子的扭转变形根据圣维南原理可知,在管子的任一截面上的内力(矩)Mn是均匀分布的,且根据力的平衡法则可知,Mn =M。Mn也是一个矢量,且规定:按右手螺旋法则,当矢量方向与截面的外法线方向一致时,Mn为正,反之为负。对于管子的扭转变形,其应力在管子各横截面上的分布已不再是均匀的。从图6-4中可以看出,距轴线中心O越近,变形量越小。图6-4所示的为一从受扭转变形
6、的管子上截取的微元,微元沿轴线长度为dx。在扭转力矩的作用下,位于半径Ri上的a点因发生微小错动到达a点,此时也相当于oa线相对于oa线转动了一个dj角度。那么由其几何关系可知:aa=Ri dj。而ba线发生的角度改变(即剪应变)¡i应为:(a) 图6-4 扭转变形微元 式(a)即为管道元件扭转变形时的几何方程。由公式可以看出,横截面上任意点的剪应变与该点到管子轴中心线的距离成正比,而到轴中心线距离相同的点(即在同一园周上的点),其剪应变相同。由虎克定律知道,在半径Ri上任意点的剪应力i=G.ri,将(a)式代入可得:(b) 式(b)即为管子扭转变形时的物理方程。由式中可以看出,横截
7、面上任意点的剪力与该点到管中心的距离成正比,且同一园周上的应力相等。由此也可以看出,此时的剪应力在管子横截面上已非均匀分布。式(b)中由于有dj/dx这一未知条件,故仍无法计算剪应力,此时须借助于静力平衡方程。图6-5表示了管子某一横截面上的内力微元,微元的宽度为dRi,周长为2Ri,面积为dAi=2Ri.dRi。由于dRi非常小,可认为在微元中的剪应力是均匀分布的,即此时面积dAi上的剪力为:Ni=idAi扭矩为:Mi=NiRI=iRI dAi对整个管道横截面积积分可得:(c) 将式(b)代入式(c)可得:图6-5 扭转变形内力微元 在该积分方程中,只有Ri是变量,故可将常量 移出积分外。设
8、 ,代入上式可以得到: (d) 将式(b)代入式(d)可得:对上式进行公式变换得:(e) 由式(e)可以看出,当Ri=D/2时,i最大,即最大剪应力发生在管子横截面的最外园上,此时有:设 并代入上式可得: (6-3) 式6-3即为管子受扭转载荷时的强度校核公式。同样,通过式子变换可以进行管子受扭转载荷时的截面参数计算和确定许可扭转载荷。通常将Jp叫做管道元件的扭转惯性矩,将Wn叫做管道元件的抗扭截面模量。通过Jp和Wn的定义式很容易求出图6-5所示管子的表达式:同样,一般很难查到材料的扭转许用剪应力。试验证明,扭转许用剪应力与拉伸许用应力存在如下近似关系:(三)弯曲在这里仅研究纯弯曲的情况,即
9、管子各横截面上只有正应力而无剪应力,管道元件中心轴线变形后为一平面曲线。此时管子的弯曲变形是由大小相等、方向相反、作用面为沿管子中心轴线的纵向平面并包含轴线在内的两个力矩引起的管子变形形式。其变形特点表现为管子的中心轴线由直线变为平面曲线,如图6-6所示。图6-6 管子的平面纯弯曲变形在管子上用两个横截面截取得到一个微元。在弯矩的作用下,两个横截面都绕截面内的某一轴线转了一个角度,那么此时微元中两个截面形成一个夹角d,见图6-6(b)所示。在微元中,靠近弯曲内侧的金属受压缩,靠近弯曲外侧的金属受拉伸。那么在每个截面上,金属由压缩变为拉伸时,肯定会存在一层金属不发生变形,并称这层金属为中性层。中
10、性层的曲率半径为R,那么距中性层为y的金属在变形后的长度为aa=(R+|y|)d。由于中性层金属的长度不变,且oo=R.d,那么距中性层为y的金属变形量(即线应变)则为:(a) 式(a)即为管道元件受平面纯弯曲的几何方程。公式表示,距中性层越远,其线应变越大。y的正负号分别表示金属受拉或受压,当直观能判断金属受拉还是受压时,其绝对值符号可以取消。根据虎克定律,可得其物理方程为:(b) 从式(b)中可以看出,管子在受平面纯弯曲时,其正应力在横截面上的分布是不均匀的,应力的大小与其距中性层的距离成正比。为了建立管子受平面纯弯曲的静力方程,可取一个内力微元,见图6-7所示。微元的面积为dAy。可以证
11、明,中性层一定通过管子横截面的形心。由于管子受纯弯曲,故其静力方程为:(c) 将(b)式代入(c)式可得:设 ,代入上式并进行式子变换得: (d) 将式(d)代入式(b)可得: 图6-7 平面纯弯曲内力微元(e) 由式(e)可知,当y最大时,此时的应力也最大,即有: (f) 设 ,代入式(f)可得: (6-4) 式6-4即为管子受平面纯弯曲时的强度校核公式。同样,通过式子变换,可以进行管子受纯弯曲荷载时的截面参数计算和确定许可弯曲载荷。通常将Jz叫做管子横截面对Z轴的惯性矩,将Wz叫做管子的抗弯截面模量。通过Jz和Wz的定义公式,很容易求出图6-7所示管子的表达式为:在工程上,有时不仅要核算管子在弯曲载荷作用下的强度,还要核算其挠度。所谓挠度,是指在弯曲载荷作用下,管子上各点(一般以形心为代表)上下的垂直位移,见图6-8所示的y坐标。由图中可知,管子在弯曲载荷的作用下,其形心直线变为平面曲线,并可用y=f(x)表示,常称之为挠曲线。对非纯弯曲情况,弯矩M和曲率半径R已不在是一个常数,而是x的函数,即:M=M(x),R=R(x)在跨度l远大于管子直径的情况下,尤其是受均布载荷的情况下,可忽略剪力对挠度的影响,那么可有下列近似公式:(g) 将式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧互联引领未来(2024年信息技术合作)2篇
- 2024年度租赁合同:办公场地租赁及装修3篇
- 2024年人工挖孔桩工程劳务协议2篇
- 2024年员工转会协议范本3篇
- 融资担保及中介服务协议(2024年)2篇
- 2024年度abc设备采购合同2篇
- 2024年特色门店租赁合同书
- 2024年度防火门安全评估与改进合同2篇
- 2024年城市基础设施承包2篇
- 全新石子供货合同(2024年修订)3篇
- 2024-2030年青海省旅游行业市场发展分析及发展趋势与投资前景研究报告
- 服装行业环保低碳生产方案
- 恢复驾驶资格科目一汽车类考试题库被吊销补考用450题
- 床单洗涤与更换制度
- 专利咨询服务协议合同范本2024年
- 2025届【九省联考】全国高三10月联考数学试题
- GB/T 23106-2024家用和类似用途毛发护理器具性能测试方法
- 16G362钢筋混凝土结构预埋件(详细书签)图集
- 期中 (试题) -2024-2025学年外研版(三起)(2024)英语三年级上册
- 烟草专卖法知识考试题及答案
- 安装充电桩施工方案
评论
0/150
提交评论