下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第17章 勾股定理的复习(1)教学设计学习目标:知识与技能:掌握勾股定理以及变式的简单应用,理解定理的一般探究方法。过程与方法:让学生经历观察、思考、动手实践和求解的活动过程;培养学生独立思考能力和动手实践能力。发展同学们数与形结合的数学思想。情感态度与价值观:在数学活动中发展学生的探究意识和合作交流良好学习的习惯。使学生认识到数学来自生活,并服务于生活,从而增强学生学数学、用数学的意识,体会勾股定理的文化价值。教学重点与难点:应用勾股定理及逆定理解决实际问题是本节课的教学重点而把实际问题化归成勾股定理的几何模型(直角三角形)则是本节课的教学难点教学过程一、复习引入1、请一位同学说说勾股定理的
2、内容是什么?(直角三角形两直角边的平方和等于斜边的平方.)2、Rt A AB件,/ 0= 90时AC2+BC2 = AB2,有哪些不同的表示形式? 今天我们来看看这个定理的应用。3、学生进行练习:在 RSABC中,AB = c, BC= a, AC= b, Z B=90 .已知a=3, b=4,求c;已知a=12, c=5,求b(请大家画出图来,注意不要简单机械的套a2+b2= c2,要根据本质来看问题)4、勾股定理只能在直角三角形中运用【例1】 在4ABC中,AC=3, BC=4,贝U AB的长为().A. 5B. 100. 4D.大于1且小于7只能用“两边之和大于第三边,两边之差小于第三边
3、”判断出AB的范围.正确答案:D.5、运用勾股定理时要分清斜边和直角边【例2】 已知直角三角形的两边长分别为3、4,求第三边长. 人正解:(1)当两直角边为3和4时,第三边长为(2)当斜边为4, 一直角 的咨万 边为3时,第三边长6、给定三角形要分形状运用勾股定理【例3】 在 AB0中,AB=15 , AC=20 , AD是BC边上的高, AD=12 ,试求出B0边的长.【分析与解】 此题没有给出图示,又由于三角形的高可能在三角形内部也可能在三角形外部,所以其高的位置应分两种情况来求 综上可得BC边的长为25或7.配套练习:等腰三角形的一个内角为 三角形的面积.解:等腰三角形 ABC顶角为30
4、 (高在形内).如下图所示, ABC有两种情况.30。,腰长为4,求这个等腰三角形腰上的高及这个等腰时;等腰三角形 ABC底角为30时;(高在形外);.引导学生讨论线AD折叠,使它落在斜边AB上,且C点与E重合,求CD的长.解:如图,在RTAABC中/C=90o,由勾股定理得AB .AC2 BC2.62 8210(cm)由折叠可知 CD=DE , AE=AC=6cm 且/DEB =90,故可设 CD=DE =x cm,则 BE=10 -6=4(cm)DB=(8-x)cm在 RTAABC 中 /C= 90 ,由勾股定理得22222DE2 BE2 DB2,即 x2 42(8x)解得:x=3.所以C
5、D= 3cm配套练习:如图,小红用一张长方形纸片ABCD宽AB为8cm,?长BC?为10cm.当小红折叠时,D进行折纸,已知该纸片顶点D落在BC边上的点F处(折痕为AE).想接着通过问题“试一试”进一步直观体会勾股定理与实际问题之间的关系“应用勾股定理解决实际问题的一般思路是什么?”7、折叠问题与方程思想:【例4】如图,一块直角三角形的纸片,两直角边AC=6 cm, BC=8cmo现将直角边 AC沿直一想,此时EC有多长?这个环节主要是从由简单的实际问题(平面上)激发学生的探求欲望,通过探求过程,学会 分析问题中隐藏的几何模型(直角三角形),体会勾股定理在生活中无处不在。激发和点燃学 生学习的
6、兴趣。为后续学习起到了引领作用。二、直角三角形的识别(勾股定理逆定理的复习)c为边的三角形不是直角三角形的是(B、a=7,b=24,c=25D、a=3,b=4,c=5出示练习(学生独立完成) 1、下列各组数中,以 a, b,A、a=1.5, b=2,c=3C、a=6,b=8,c=102、若 ABC中,/ A, / B, / C对边分别为a,b,c下列叙述不正确的是(A.如果/C - / B= /A,则 ABO直角三角 形B.如果C2=b2-a2,那么 ABC是直角三角形,且/ C=90C.如果(c+a) (c-a尸b2,那么 ABC是直角三角形D.如果/ A: Z B: Z C=5 2: 3,
7、则 ABC是直角三角形三、知识的应用迁移训练,学以致用【例5】 已知:如图,四边形ABCD中,AB=3cm , AD=4cm , BC=13cm , CD=12cm ,且/ A=90 (1 )求B D的长;(2 )试求AB CD的面积;【例6】李老师设计了这样一道探究题:如图 1 (1),有一个圆柱,它高为12厘米,底面半 径为3厘米,在圆柱下底面的 A点有一只蚂蚁,它想吃到上底面与 A点相对的B点处的食物, 则沿圆柱侧面爬行的最短路程是多少?(兀 的取值为3).【思考与分析】这是一道蚂蚁怎么走最近的问题,同学们可以这样思考:(1)自己做一个圆柱,尝试从A点到B点沿圆柱侧面画出几条路线,你认为
8、哪条路线最短?(2)如图1 (2)所示,将圆柱侧面剪开展成一个长方形,从A到B的最短路线是什么?你画对了吗?图 1(1)(3)蚂蚁从A点,想吃到B点上的食物, 它需要爬行的最短路线是多少?由A到B,有无数条路线,如果将圆柱侧面 从A点(蚂蚁爬行路径的起始点) 垂直向上剪 开,则剪开的侧面展开图的形状是长方形 .最 短路线是线段AB,因为两点之间线段最短.这 个最短距离就是AB的长.解:圆柱的底面周长为 2兀r = 2X 3183 =展开图中CB的长是底面周长的一半,为 2x 18=9,圆柱白高为12,即AC=12,在RtAABC中,根据勾股定理有:AB2=AC2+BC2= 92+ 122,所以
9、AB=15厘米.P从A点出发,沿着圆柱变式训练 如图,圆柱的轴截面 ABCD是边长为4的正方形,动点 的侧面移动到BC的中点S的最短路径长为()A.B. 2VI+W【分析与解】 求几何体表面的最短C. 4VT+tFD. 2V1+2tt2距离,可联系我们学过的圆柱体的侧面 展开图,化“曲面”为“平面”,再寻 找解题的途径.如上右图,可得展开图中的 AB的 长为4nt + 2=2兀,B S的长为 42个在RtAB S中,根据勾股定理,得AS = 2十,?.故选A.(备用)课后练习:在长30cm、宽50 cm、高40 cm的木箱中,如果在 箱内的A处有一只昆虫,它要在箱壁上爬行到B处,至少要爬多远?
10、【反思】这个有趣的问题是勾股定理的典型应用,此问题看上去是一 个曲面上的路线问题, 但实际上通过圆柱的侧面展开而转化为平面上的 路线问题,值得注意的是,在剪开圆柱侧面时, 要从A点开始并垂直于 A点剪开,这样展开的侧面才是个矩形,得到直角,才能用勾股定理解 决问题.本题的设计与应用不止如此,我们在弄清此题的基础上,就可以进一步地引导学生进行变式 训练,进一步地演变成如下的问题.本环节的设计意图是通过对两个实际问题的分析讨论,让学生理解用勾股定理解决实际问题的方法,体现化归的数学思想。在这个环节中,我共设计了三个问题.第一个问题是通过直接运用勾股定理计算确定这个安全区域的半径来加深学生对勾股定理应用方法的理解;第二个问题是让学生先从实际问题中划归出直角三角形的模型,再由学生自己给出解答过程。既考查了学生对本节课学习内容的理解,同 时也为解决第三个问题作出了准备 ;第三个问题的目的是要学生能理解求立体图形上两点间最短 路径的方法。这个环节的设计意图让学生尝试在曲面上寻找最短路线,把圆柱侧面展开从而转化成平面 上的路线问题,利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州城市职业学院《西医外科学医学免疫学与病原生物学》2023-2024学年第一学期期末试卷
- 贵州财经大学《藏族文化概论》2023-2024学年第一学期期末试卷
- 2025青海省安全员-B证考试题库附答案
- 2025安徽省建筑安全员《A证》考试题库及答案
- 贵阳人文科技学院《形式化方法导论》2023-2024学年第一学期期末试卷
- 广州珠江职业技术学院《机能学实验(二)》2023-2024学年第一学期期末试卷
- 广州新华学院《工业机器人基础操作与编程实训》2023-2024学年第一学期期末试卷
- 广州卫生职业技术学院《分子与细胞生物学检测技术》2023-2024学年第一学期期末试卷
- 广州铁路职业技术学院《建筑及环境设计方法学》2023-2024学年第一学期期末试卷
- 2025年江西省安全员《B证》考试题库
- 工程力学课后习题答案1
- 6S视觉管理之定置划线颜色管理及标准样式
- 四年级数学(除数是两位数)计算题专项练习及答案
- 中考字音字形练习题(含答案)-字音字形专项训练
- 社区矫正个别教育记录内容范文
- 常见妇科三大恶性肿瘤的流行及疾病负担研究现状
- CTD申报资料撰写模板:模块三之3.2.S.4原料药的质量控制
- (正式版)JTT 1482-2023 道路运输安全监督检查规范
- 围手术期血糖的管理
- 2024年度医疗器械监督管理条例培训课件
- 100以内不进位不退位加减法练习题
评论
0/150
提交评论