下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、烟台二十中课时教学设计课题圆周角课型新授课教学目标知识与能力1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、准确地运用圆周角定理及其推论进行简单的证明计算。过程与方法1.在探索圆周角定理的过程中,学会运用分类讨论的数学思想转化的数学思想解决问题。2.渗透由特殊到一般”,由般到特殊”的数学思想方法.情感态度与价值观引导学生对图形的观察,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。教学重点圆周角的概念和圆周角定理及其推论的应用教学难点认识圆周角定理需要分三种情况逐一证明的必要性。2.推论的灵活应用以及辅助线的添加教学方法自主探究
2、和合作探究相结合教学用具多媒体课件板书设计圆周角圆周角定义例一例二定理推论教学过程教师活动学生活动活动1问题如图,同学甲站在圆心O位置,同学乙站在靠墙的位置C,丁站在其他靠墙的位置DE。得到的视角分别是/AOB,/ACB,ZAEB这些视角中哪些是圆心角?其他各角具备什么共同特征?从而引出圆周角定义,并会判断。同学丙/ADB教师结合示意图和圆心角的定义,引导学生得出圆周角的定义,由学生口述较师项小咪什取囹片)展小回社1匕附牌件谓)掾封山小牌件谓慢散闻不息囹。教师结合示意图和圆心角的定义,引导学生得出圆周角的定义,由学生口述,圆周角:顶点在圆上,且两边都与圆相交的角。强调:定义中的两个条件缺一不可
3、。利用几何画板演示,让学生辨析圆周角。接下来给学一组辨析题:练习1:判别图7-29中各圆形中的角是不是圆周角,并说明理由.教师提出问题,引导学生用度量工具量角器,动手实验进行度量,发现结论。由学生归纳发现的规律,揖SUU图7-29活动2:探究圆周角定理,并证明圆周角定理。问题1:同弧(弧AB)所对的圆心角/AO*圆周角/ACB的大小关系?同弧(弧AB)所对的圆周角/ACB/ADB/AEB的大小关系怎样?问题2:一条弧所对的圆周角有多少个?圆心角呢?圆心与圆周角的位置关系有几种?当圆心在圆周角的一边上时,如何证明活动2所发现的结论?对于两种情况你也能证明吗?教师提出问题,引导学生用度量工具量角器
4、,动手实验进行度量,发现结论。由学生归纳发现的规律,教师板书:向弧所对的圆周角度数没有变化,并且它的度数恰好等于这条弧所对的圆心角度数的一半。教师提问,学生动手画,思考并回答。教师概括:虽然一条弧所对的圆周角有无数个,但它们与圆心的位置关系,归纳起来却只后二种情况:圆心在圆周角的一边上、圆心在圆周角A内部、圆心在圆周角外部.教师引导,学生写出已知,成证明。(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:教师提问,学生动手画,思考并回答。示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半商提出必须用严格的数学方法去证明.证明:(圆心在圆周角上)OAOC1ZOC=ZBAC+ZCnZ
5、BAC=-ZBOC.2问题2:在OO中,若AE=EF,过来,若/C=/G,是否得到当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.问题3:(1)一个特殊的圆弧一一半圆,(2)如果一条弧所对的圆周角是是什么样的角?让学生分析、研究,并充分交流.它所对的圆周角是什么样的角?90。,那么这条弧所对的圆心角注意:问题解决,只要构造圆心角进行过渡即可;若0=部,则/C=/G;但反过来当/C=ZG,在同圆或等圆中,可得若AB=EF,否则不一定成立.这时教师要求学生举出反面例子:若/C=ZG则EF,从
6、而得到圆周角的又一条性质让学生分析、研究,并充分交流.(2)其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论证明:彳出过C的直径(略)活动三:探索圆周角定理的推论问题1:画一个圆,以日C为弧的端点能画多少个圆周角?它们有什么关系?能否得到/C=ZG呢?根据什么?反AB=EF呢问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等老师组织学生归纳:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.重视:同弧说明是“同一个圆”;等弧
7、说明是“在同圆或等圆中”.问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)学生通过问题3中两个问题的解决,在教师引导卜得推论半圆(或直径)所对的圆周角是直角;90。的圆周角所对的弦直径.教师指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.巩固练习1:判断题:1 .等弧所对的圆周角相等;()2 .相等的圆周角所对的弧也相等;()3 .90的角所对的弦是直径;()4 .同弦所对的圆周角相等.()活动四:圆周角定理及其推论的应用例1如图7-30,OAOB0O是OO的半径,/AOB=2BOC求证:/ACB=2/BAC&图7
8、-30例2如图24.1-15,0O的直径AB为10cm,弦AC为6cm,/ACB的平分线交。O于D,求BGADBD的长。*,D例1由教师引导学生结合图形分析证明思路,证明过程请一名中等生上黑板完成,其它同学把证明写在练习本上.师生交流:分析解题思路;作辅助线的方法,充分利用直径所对的圆周角为直角解题推理过程(要规范).活动五:小结,布置作业穹图7-33指导学生共同小结知识:本节课主要学习了圆周角定理及其推论.推论各具特色,作用各异,在今后的学习中应时十分广泛,应熟练掌握.能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角思想方法。作业:1)如图,已知圆心角/A=100,求圆周角/ACB/ADB的吗?(学生通过交流获得知识)学生通过问题3中两个问题的解决,在教师引导下得推论证明写在练习本上.本节课主要学习了圆周角定理及其推论.推论各具特色,作用各异,度数?(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?说明:一条弧所对的圆周角内尢数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版电力工程项目居间代理佣金服务合同2篇
- 二零二五版电子商业买卖合同模板3篇
- 二零二五年度工地钢管外架施工环保设施设计与安装承包合同3篇
- 白叶2025版离婚协议中共同财产分割及子女抚养费用支付合同二零二五年度3篇
- 二零二五版30天退换租免佣租赁服务合同2篇
- 二零二五年生活垃圾收运一体化服务合同2篇
- 二零二五年度神东派遣工权益同工同酬合同3篇
- 2025年度彩钢围挡施工及租赁一体化合同3篇
- 二零二五年度食品安全风险评估模型构建合同3篇
- 二零二五年度钢筋产品研发与技术转移合同3篇
- 优秀支行行长推荐材料
- 公司设备转让合同协议书
- 2023年全国统一建筑工程预算工程量计算规则完整版
- 教科版四年级科学下册第三单元岩石与土壤4.制作岩石和矿物标本(教学设计)教案
- 大学《工程力学》期末考试试题库含详细答案
- 2022年湖北省武汉市中考数学试卷含解析
- TLFSA 003-2020 危害分析与关键控制点(HACCP)体系调味面制品生产企业要求
- LY/T 2244.3-2014自然保护区保护成效评估技术导则第3部分:景观保护
- 纪律教育月批评与自我批评五篇
- GB/T 26480-2011阀门的检验和试验
- GB/T 13342-2007船用往复式液压缸通用技术条件
评论
0/150
提交评论