普通高等学校在校学生总数变动的多因素分析计量经济学大作业_第1页
普通高等学校在校学生总数变动的多因素分析计量经济学大作业_第2页
普通高等学校在校学生总数变动的多因素分析计量经济学大作业_第3页
普通高等学校在校学生总数变动的多因素分析计量经济学大作业_第4页
普通高等学校在校学生总数变动的多因素分析计量经济学大作业_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上计量经济学大作业普通高等学校在校学生总数变动的多因素分析学号: 姓名: 组长:邱碧涛 组员: 杨意 钟丹兰 专业: 财政学 修课时间: 2011-2012第一学期 任课教师: 朱永军 成绩: 评语:本文通过对中国普通高等学校在校学生总数的变动进行多因素分析,采用中国1985年到2009年的数据,建立以在校大学生总数为应变量,以其它可量化影响因素为自变量的多元线性回归模型,并利用模型对在校大学生总数进行数量化分析,得出各因素与在校大学生总数成正相关关系的结论。从大作业的完成情况来看,说明本小组成员对计量经济学有一定程度的理解,并能使用Eviews软件进行实证分析。 Em

2、ail:普通高等学校在校学生总数变动的多因素分析摘要本文主要通过对中国普通高等学校在校学生总数的变动进行多因素分析,建立以在校大学生总数为应变量,以其它可量化影响因素为自变量的多元线性回归模型,并利用模型对在校大学生总数进行数量化分析,观察各因素是如何分别影响在校大学生总数的。 关键词:在校大学生总数 多因素分析 模型 计量经济学 检验 AbstractThis text uses the total number of students in Chinese colleges and universities to do multivariate analysis, and it estab

3、lishes a multiple linear regression model, which uses the total number of college students to be the dependent variable and other factors to be the independent variable .What's more, it uses the model to do quantitative analysis of the total number of college students, and observe how various fa

4、ctors affect the total number of college students respectively.Key words: The total number of college students, Multivariate analysis, Model, Econometric, Test 目录1问题的提出改革开放以来,中国的教育事业取得了长足的发展,各项教育指标都较以往有了很大提高,受教育的人数也是逐年上升,文盲比例直线下降。随着有知识、有文化的人数的不断增加,中国的经济也随之高速发展,众多毕业生们在各行各业上表现都十分出色,取得了一系列令人瞩目的成就。从趋势上看

5、,大学生人数将会持续上升。根据中国高等教育发展计划(7月份)最新统计是2960万人。并以每年1.3-1.6%速度扩招,2020年入学率能达到40%,高等教育在校学生能达到5000万。我国第六次人口普查数据显示,全国31省份具有大学(指大专以上)文化程度的人口近1.2亿。同第五次全国人口普查相比,每10万人中具有大学文化程度的由3611人上升为8930人,人数翻了一倍多。这主要是因为我国高校从1999年开始大规模扩招。美国学者马丁·特罗上世纪70年代曾经提出“高等教育发展三阶段说”:高等教育入学率达到适龄人口的15,标志着从精英型进入到大众型,超过50便进入普及型。教育部曾指出,200

6、8年全国各类高等教育在学人数达到2900万人,毛入学率达到23.3%。中国高等教育规模居世界首位,已经进入大众化阶段的历史跨越。近年来,很多学者在对教育、经济等方面做出了深入的研究,发现在校大学生数和普通高等学校数、总人口数二者存在着密切联系。在本文站在前人的基础上,引用计量的方法,将二者综合起来对在校大学生数量变动的影响情况进行探讨,作者认为,在我国经济飞速发展的过程中,人均GDP的增长,对在校大学生的数量也存在着重要影响,因而本文将人均GDP引入该项目的实证研究分析。2 理论综述本文主要对中国在校大学生总数(应变量)进行多因素分析(具体分析见下图),并搜集相关数据,建立模型,对此进行数量分

7、析。在得到在校大学生总数与各主要因素间的数量关系后,据模型方程中的各因素系数大小,分析各因素的重要性,并找出影响在校大学生总数最大的因素。 影响在校大学生总数变动的主要影响因素如下图: 人口总数 这是影响在校大学生总数的一个重要因素 学校总数 这也是影响在校大学生总数的重要因素 人均GDP 笔者认为这个因素同样重要 (注:1.由于其他因素或是不好量化,或是数据资料难于查找,故为了分析的简便,这里仅用此三个因素来进行回归分析。 2.由于研究的是影响在校大学生的变动因素,因此学校总数指普通高等学校,不包括其他类别学校)3模型设定其中,Y在校大学生总数(应变量) X1我国总人口(解释变量) X2 普

8、通高等学校总数(解释变量) X3 我国人均GDP(解释变量) 注:有关模型的一些假定:(1)假定不考虑学生转学的影响。(2)假定各统计量计算准确。4数据的搜集采用中国1985年到2009年的时间序列数据,具体情况见下表年份学生总数Y(万)总人口x1(万)学校总数x2(所)人均GDPx3(元)1985170.31016857.821986188.01054963.191987195.910631112.381988206.610751365.511989208.210751519.001990206.310751644.001991204.410751892.761992218.41053231

9、1.091993253.610652998.361994279.910804044.001995290.610545045.731996302.110325845.891997317.410206420.181998340.910226796.031999413.410717158.502000556.110417857.682001719.112258621.712002903.413969398.0520031108.6155210541.9720041333.5173112335.5820051561.8179214185.3620061738.8186716499.7020071884

10、.9190820169.4620082021.0226323707.7120092144.7230525575.48(资料来源: 2010年中国统计年鉴)5模型的估计与调整(1) 建立工作文件夹,并输入上图数据(2) 分别做散点图分析,并建立回归模型。(其中:用Y表示普通高等学校在校学生总数,用X1表示我国总人口,用X2表示普通高等学校总数,用X3表示我国人均GDP,共三组),如下:从散点图的走势可知,普通高等学校在校学生总数与我国总人口呈正相关关系,普通高等学校在校学生总数与普通高等学校总数呈正相关关系,普通高等学校在校学生总数与我国人均GDP呈正相关关系。根据散点图显示的结果(Y与X1、X

11、2、X3呈现线性关系),建立回归模型如下:其中:Yi表示普通高等学校在校学生总数,X1表示我国总人口,X2表示普通高等学校总数,X3表示我国人均GDP,为干扰项。(3) 求回归方程在EViews命令框中直接键入“LS Y C X1 X2 X3”,然后回车,可出现下图计算结果:参数估计所建立的回归方程为:Y=-2319.334+0.+1.+0. t=(-3.) (2.) (7.) (1.)=0. r-2=0. F=465.8275 DW=1.(4) 模型检验: 1) 经济意义检验:普通高等学校在校学生总数与我国总人口成正相关,与普通高等学校总数成正相关,与我国人均GDP成正相关,当普通高等学校总

12、数、我国人均GDP不变时,我国总人口增加1单位,普通高等学校在校学生总数增加0.单位;当我国总人口、我国人均GDP不变时,普通高等学校总数增加1单位,普通高等学校在校学生总数增加1.单位;当我国总人口、普通高等学校总数不变时,我国人均GDP增加1单位,普通高等学校在校学生总数增加0.单位,符合现实意义。 2)经济计量检验 总体显著性检验(拟合优度和统计检验):由回归结果可知,可决系数R2=0.,r-2=0.与1十分接近,说明模型在整体上对数据的拟合优度很好。 回归系数显著性检验 F检验针对H0:1=2=3=0,给定显著性水平为0.05,在F分布表中查出自由度3和21的临界值F0.05(3,21

13、)=3.07。由于F=465.8275 >3.07,应拒绝原假设H0,说明回归方程显著,即我国总人口(X1),普通高等学校总数(X2),我国人均GDP(X3)对(Y)普通高等学校在校学生总数有显著影响。 t检验分别针对H0:j=0(j=1,2,3),给定显著性水平为0.05时,查t分布表得自由度21的临界值t0.025(21)=1.721。对应统计量为2.,7.,1.,| t1 |,| t2 | >t0.025(21)=1.721,通过显著性检验,| t3 | <t0.025(21)=1.721所以未通过显著性检验。3)多重共线性检验由于R2=0.较大且接近1,F=465.8

14、275 >F0.05(3,21)=3.07,所以认为普通高等学校在校学生总数与上述变量总体上线性显著相关。但由于X3的参数估计值未能通过t检验,所以认为解释变量间有可能存在多重共线性。第一步:检验简单相关系数。输入命令“COR X1 X2 X3 ”,得:表中数据皆接近于1,可见,我国总人口,普通高等学校总数,我国人均GDP三个解释变量间高度相关,也就是存在严重的多重共线性。第二步:为检验多重共线性的影响,作如下简单回归:1) 分别作Y与X1,X2,X3的回归: 输入命令“ls y c x1”,得:得到回归方程为: Y=-7085.498+0.X (-6.) (6.) =0. DW=0.

15、输入命令“ls y c x2”,得:得到回归方程为: Y=-1381.739+1.X (-15.81339) (25.05957) =0. DW=0. 输入命令“ls y c x3”,得:得到回归方程为: Y=-6.+0.X (-0.) (19.52673) =0. DW=0.以上三个方程根据经济理论和统计检验,普通高等学校总数(X2)是最重要的解释变量(t检验值=25.05957也最大),从而得出最优简单回归方程。2) 逐步回归将其余变量逐个引入,并进行回归,结果如下表:(常数)(X) (X) (X)-1381.739(-15.81339)1.(25.05957)0.-3020.909(-9

16、.)1.(21.26451)0.(5.)0.-2319.334(-3.)1.(7.)0.(2.)0.1.0.结果分析:在最优简单回归方程中引入变量X1,使R2由0.提高到0.,R2值改进较大,1,2都是正号是合理的,进行t检验,1,2都显著,从经济上来看是合理的。因此,可以认为X1是“有利变量”,应给予保留。引入变量X3,R2由0.提高到0.,R2值略有提高,对其他两个解释变量没有多大影响,1,2,3都是正号是合理的,进行t检验,3不显著,因此认为X3是“多余变量”,应从模型中删除。得到如下结论:回归模型以为最优模型。 最优模型为:Y=-3020.909+1.X2+0.X1 (-9.) (21

17、.26451) (5.)R2=0. F=679.5270 DW=1. 第三步:异方差检验与修正先做参数估计由上述多重共线性的检验得,最优模型为:Y=-3020.909+1.X2+0.X1检验异方差性White 检验在此处用white检验,P值都较小,说明模型存在异方差。由以上结果表明,模型存在异方差。异方差修正修正结果如下:第四步:序列相关性检验与修正(1)相关性检验由参数估计所建立的回归方程为:Y=-2319.334+0.+1.+0. t=(-3.) (2.) (7.) (1.)=0. r-2=0. F=465.8275 DW=1.图示法我们观察图表,残差的序列图是带有循环性的,ei是在连续

18、几个正值后再连续,几个负值,认为它们之间存在自相关。DW检验由开始的估计的DW=1.,在给定显著水平,查DW表因为T=25.k=2得下限临界值di=1.29,上限临界值du=1.45。因为统计量0<1.=DW<di=1.29,则表明存在正自相关由以上结果表明,参数估计所建立的回归方程存在正自相关(2)相关性修正:科伦-奥科特(迭代法)命令:LS Y C X1 X2 X3 AR(1),可得如下结果:R2=0.说明拟合优度很高,在显著水平,T =25,解释变量的个数k=2下,得下临界值为di=1.29,上临界值du=1.45,因为du=1.45<DW=1.8226<4 -du,根据判断区域知,表明随即扰动项的自相关已经被消除。由前面可知DW=1.,而 =1-DW/2=0.15224 0=-2678.672/(1-)=-3159.7056由迭代结果可知:1=0.01405 3=1. 3=0.由此我们得到最终普通高等学校在校学生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论