




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版九年级数学上册讲义(全册)第二十一章二次根式教材内容1 .本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2 .本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章反比例正函数、第十八章勾股定理及其应用等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1 .知识与技能(1)理解二次根式的概念.(2)理解4a(a>0)是一个非负数,(金)2=a(a>0),Va2=a(a>0).(3)掌握Oabb=Oab(a>0,b>0),Vab=VaVb;=+m(a>0,b>0),+m=(aR0,
2、b>0).bbb、b4 4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.5 .过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳得出概念.?再对概念的内涵进行分析得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,?并运用规定进行计算.(3)利用逆向思维,?得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,?给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.6 .
3、情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1 .二次根式4a(a>0)的内涵.品(a>0)是一个非负数;(Ja)2=a(a>0);Va2=a(a>0)及其运用.2 .二次根式乘除法的规定及其运用.3 .最简二次根式的概念.4 .二次根式的加减运算.教学难点_1 .对Ja(a>0)是一个非负数的理解;对等式(0)2=a(a>0)及好=a(a>0)的理解及应用.2 .二次根式的乘法、除法的条件限制.3 .利用最简二次根式的概念
4、把一个二次根式化成最简二次根式.教学关键1 .潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2 .培养学生利用二次根式的规定和重要结论进行准确计算的能力,?培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:1/1621.1二次根式3课时21.2二次根式的乘法3课时21.3二次根式的加减3课时教学活动、习题课、小结2课时21.1二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用ja(a>0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1 .重点:形如4a(a>0)的式
5、子叫做二次根式的概念;2 .难点与关键:利用“品(a>0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3,那么它的图象在第一象限横、?纵坐标相等的点的坐标是x问题2:如图,在直角三角形ABC中,AC=3,BC=1,/C=90°,那么AB边的长是.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S/16,那么S=老师点评:(石,石).问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=J3,所以所求点的坐标问题2:由勾股定理得AB=、10问题3:由方差的概念得S
6、=J6.二、探索新知很明显而、而、J4,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如ja(a>0)?的式子叫做二次根式,“厂”称为二次根号.(学生活动)议一议:1. -1有算术平方根吗?2. 0的算术平方根是多少?3. 当a<0,有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:Q1.-V2、V3、Vx(x>0)、5/0、l2、-2、jX_y(x>0,y?>0).分析:二次根式应满足两个条件:第,有二次根号第二,被开方数是正数或0.解:二次根式有:短、&(x>0)
7、、无、-短、jxy(x>0,y>0);不是二次根式的有:褥、-xxy例2.当x是多少时,J3x1在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1由0,?J3x1才能有意义.1解:由3x-1>0,得:x>-31当X-时,j3x1在实数范围内有意义.3巩固练习教材P练习四、1、2、3.应用拓展1例3.当x是多少时,J2x3+在实数范围内有意乂?x1分析:要使wX2x解:依题意彳导x3由得:x>-1.1.3+在实数范围内有意义,必须同时满足J2x3中的R0和中的x+1w0.x1x1:302由得:xw-13当x且xw-1时,J2x3
8、+2x1,一一,一在实数范围内有意义.1例4(1)已知y=J2£+Vx-2+5,求H的值.(答案:2)y2(2)若Vai+Jb1=0,求a2004+b2004的值.(答案:-)5五、归纳小结(学生活动,老师点评)本节课要掌握:1 .形如Ja(a>0)的式子叫做二次根式,“1”称为二次根号.2 .要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1 .教材P8复习巩固1、综合应用5.2 .选用课时作业设计.3 .课后彳业:同步训练第一课时作业设计、选择题3/161 .下列式子中,是二次根式的是()A.-近B.3/7C./xD.x2 .下列式子中,不是二次根式的
9、是()1A.4B.16C.8D.x3 .已知一个正方形的面积是5,那么它的边长是()A.5B.J5C.1D,以上皆不对二、填空题51 .形如的式子叫做二次根式.2 .面积为a的正方形的边长为.3 .负数平方根.三、综合提高题,试问底面边1,某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,?底面应做成正方形长应是多少?4 .当x是多少时,'2X3+x2在实数范围内有意义?x5 .若J3x+Jx3有意义,则、/厂=.6 .使式子J(x5)2有意义的未知数乂有()个.A.0B.1C.2D,无数7 .已知a、b为实数,且da5+2J102a=b+4,求a、b的值.第一课时
10、作业设计答案、1.A2,D3.B、1.7a(a>0)2.Va3.没有、1.设底面边长为x,则0.2x2=1,解答:x=75.2.依题意得:2x30xx0'x.当x>-3且xw0时,-2x3+x2在实数范围内没有意义.2x13.34. B5. a=5,b=-421.1 二次根式第二课时教学内容1 .、,a(a>0)是一一个非负数;2 .(石)2=a(a>0).教学目标4/16理解ja(a>0)是一个非负数和(百)2=a(a>0),并利用它们进行计算和化简.通过复习二次根式的概念用逻辑推理的方法推出Oa(a>0)是一个非负数,用具体数据结合算术平方
11、根的意义导出(Oa)2=a(a>0);最后运用结论严谨解题.教学重难点关键1 .重点:JO*(a>0)是一个非负数;(石)2=a(a>0)及其运用.2 .难点、关键:用分类思想的方法导出ja(a>0)是一个非负数;?用探究的方法导出(右)2=a(a>0).教学过程一、复习引入(学生活动)口答1 .什么叫二次根式?2 .当a。时,ja叫什么?当a<0时,ja有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)括(a>0)是一个什么数呢?老师点评:根据了生讨论和上面的练习,我们可以彳?出JQ(a-0)是一个非负数.做一做:根据算术平方根
12、的意义填空:(")2=;(行)2=;(49)2=;(73)2=;(A)2=;()2=;(而)2=.老师点评:石是4的算术平方根,根据算术平方根的意义不是一个平方等于4的非负数,因此有(J4)2=4.同理可得:7-22(而)2=0,所以例1计算_1.(*/3)22.(375)23.(J5)24.()2,262分析:我们可以直接利用(Va)2=a(a>0)的结论解题.解:()2=,(3石)2=32,(亚)2=32,5=45,22(口2=5,(近)2再Z.66224三、巩固练习计算下列各式的值:(3、5)2(53)25/16四、应用拓展例2计算1.(Vx1)2(x>0)2.(T
13、a2)23.(VO2a_1)24.(“x212x9)2分析:(1)因为x>0,所以x+1>0;(2)a2>0;(3)a2+2a+1=(a+1)>0;(4) 4x2-12x+9=(2x)2-2-2x3+32=(2x-3)2>0.所以上面的4题都可以运用(JO)2=a(a>0)的重要结论解题.解:(1)因为x>0,所以x+1>0(Vx_1)2=x+1(5) a2>0,)2=a2(6) a2+2a+1=(a+1)2又(a+1)2>0,1-a2+2a+1>0,Va22a1=a2+2a+1(7) .4x2-12x+9=(2x)2-22x3
14、+32=(2x-3)2又.(2x-3)2>04x2-12x+9>0,.,.(J4x212x9)2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3(2)x4-4(3)2x2-3分析:(略)五、归纳小结本节课应掌握:1 .Ta(a>0)是一个非负数;2 .(«22=a(a>0);反之:a=(Ja)2(a>0).六、布置作业1 .教材P8复习巩固2.(1)、(2)P97.2 .选用课时作业设计.3 .课后彳业:同步训练第二课时作业设计一、选择题1 .下列各式中而、扃、11、Ja2b2、Jm220、J144,二次根式的个数是(A.4B.3C.2D
15、.12 .数a没有算术平方根,则a的取值范围是().A.a>0B.a>0C.a<0D.a=0二填空题1 .(-石)2=.2 .已知有意义,那么是一个数.三、综合提高题1.计算(1)(囱)2-(T3)2(3)(1店)2(4)(-31)2(5)(2、33x2)(2、.332)2.把下列非负数写成一个数的平方的形式:6/16,、,、,、1,、,、(1)5(2)3.4(3)(4)x(x>0)63,已知,xy1+,x3=0,求xy的值.4.在实数范围内分解下列因式:(1)x2-2(2)x4-93x2-5第二课时作业设计答案、1.B2.C、1.32.非负数2x6=9KCO1、1.(
16、1)(52=92-732=-33-V62(4)(-3匕)2=9x2=6£,332. (1)5=(52(2)3.4=("4)2(3)1)2(4) x=(Vx)2(x>0)0x3,xy=34=81y4_x+金)(x-短)xy13.x304. (1)x2-2=(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+73)(x-V3)(3)略21.1二次根式(3)第三课时教学内容Va2=a(a>0)教学目标理解Va2'=a(a>0)并利用它进行计算和化简.通过具体数据的解答,探究J/=a(a>0),并利用这个结论解决具体问题.教学里难点关键1 .
17、重点:Va2=a(a>0).2 .难点:探究结论.3 .关键:讲清a>0时,J02=2才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1 .形如7a(a>0)的式子叫做二次根式;7/162 .由(a>0)是一个非负数;3 .(Va)2=a(a>0).那么,我们猜想当a>0时,4a=a是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:(老师点评):根据算术平方根的意义,我们可以得到:-2111。1292-5393亚仁2;Jo.01=0.01;J(一)=一;J()=-;00=0;J(-)=-.101033-77因此,一般地:a2
18、=a(aR0)|例1化简(1)加(2)&4)2(3)属(4)J(3)2分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用7aT=a(a>0)?去化简.解:(1)褥=。32=3(2)&4)2=44=4(3)V25=5=5(4)J(3)2=3=3三、巩固练习教材P7练习2.四、应用拓展例2填空:当a>0时,JF=;当a<0时,/鼠=,?并根据这一性质回答下列问题.(1)若JO2=a,则a可以是什么数?(2)若JI2=-a,则a可以是什么数?(3)好词则a可以是什么数?分析::Va7=a(a>0),.要填
19、第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当aw0时,ja,=j(a)2,那么-a/0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知Va2=a1,而a要大于a,只有什么时候才能保证呢?a<0.解:(1)因为4a=a,所以a>0;(2)因为Va2'=-a,所以a<0;(3)因为当a>0时4a=a,要使JF>a,即使a>a所以a不存在;当a<0时,Va2=-a,要使Va2>a,即使-a>a,a<0综上,a<0例3当x>2,化简J(x2
20、)2-J(12x)2.分析:(略)五、归纳小结本节课应掌握:s/a2=a(a>0)及其运用,同时理解当a<0时,Ja2=a的应用拓展.8/16六、布置作业1 .教材P8习题21.13、4、6、8.2 .选作课时作业设计.3 .课后彳业:同步训练第三课时作业设计一、选择题1. J(2;)2j(2孑的值是().A.0B.2C.4-D.以上都不对332.a>0时,/、(a)2、-JO2,比较它们的结果,下面四个选项中正确的是().A.,a2=.(a)2>-a2B.a2>(a)2>-、.a2C.、a2<(a)2<-.a2D.-.a2>.a2=(a)
21、2二、填空题1.-J0.0004=.2,若s/20m是一个正整数,则正整数m的最小值是.三、综合提高题1 .先化简再求值:当a=9时,求a+J12a7的值,甲乙两人的解答如下:甲的解答为:原式=a+&1_a)7=a+(1-a)=1;乙的解答为:原式=a+J(1a)2=a+(a-1)=2a-1=17.两种解答中,的解答是错误的,错误的原因是.2 .若1995-a+<a_2000=a,求a-19952的值.(提示:先由a-2000>0,判断1995-a?的值是正数还是负数,去掉绝对值)3 .若-3wxw2时,试化简1x-2+J(x3)2+Jx210x25。答案:一、1.C2,A
22、二、1.-0.022.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-?2000?>0,?a?>2000所以a-1995+4a2000=a,Ja2000=1995,a-2000=19952,所以a-19952=2000.3.10-x21. 2二次根式的乘除第一课时教学内容ab=ab(a>0,b>0),反之Vab=VaVb(a>0,b>0)及其运用.9/16教学目标_理解7aVb=Tab(a>0,bA0),Jab=«而(a>0,b>0),并利用它们进行计算和化简由具体数据,发现规律,导出后Tb=Tab(a>0,b&
23、gt;0)并运用它进行计算;?利用逆向思维,得出,ab=a-.b(a>0,b>0)并运用它进行解题和化简.教学重难点关键重点:OaVb=abb(a>0,b>0),Tab=Oa-而(a>0,b>0)及它们的运用.难点:发现规律,导出几瓜=Oab(a>0,b>0).关键:要讲?#Tab(a<0,b<0)=TagVb,如J(2)(3)=J(2)百或J(2)(3)=JT苗=&x.13.教学过程一、复习引入(学生活动)请同学们完成下列各题.(1) 空(i)nx内=,&_9=;(2) 716x725=71625=.(3) 7100
24、x辰=,J10036=.参考上面的结果,用“>、<或="填空."x内7T_9,<16x岳,1625,7100XV36_0036(4) 用计算器计算填空-2-5-77135x屈而,亚x75/,X而病,(4)"xV5亚0,X血屈.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,?并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为7a-7b=Tab.(a>0,b>0)反过来:VOb=
25、Va屈(aR0,b-0)例1.计算(1)而X生X内(3)79xV27(4)xn分析:直接利用品Vb=Vab(a>0,b>0)计算即可.解:(1)诟x6=7351x79=19=V3(5) ,9X,27=927.923=9,310/16例2化简(6) 16(2)S/T6-81(3)J81100机2y2754分析:利用5?ab=0a而(a>0,b>0)直接化简即可.解:(1)J916=内,而=3X4=12(7) 71681=厢8向=4X9=36(8) 781100=781x7100=9X10=90(9) ,9x2y2=出2xJx2y2=62xVx2x=3xy(5)V54=&g
26、t;/9_6=V32-x爬=3娓三、巩固练习(1)计算(学生练习,老师点评)炳X褥376x2闻眄107(2)化简:同;J18;反;庖;而帚教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:,(4)(9)cn(2),411X屈=4X患X后=4田X库=4代=8时解:(1)不正确.改正:(4)(9)=49=、4x9=2x3=6(2)不正确.改正:uX>/25=J112xs/25=J25=V?!?=7167=47725,25-25五、归纳小结本节课应掌握:(1)J&赤=Jab=(a>0,b>0),Vab=Va-Vb(a>0,b>0)及其
27、运用.六、布置作业1.课本P151,4,5,6.(1)(2).2 .选用课时作业设计.3 .课后彳业:同步训练第一课时作业设计一、选择题1 .若直角三角形两条直角边的边长分别为JGcm和J12cm,?那么此直角三角形斜边长是().A.36cmB.3石cmC.9cmD.27cm11/162 .化简aJ1的结果是().A.0aB.百C.-JaD.-亚3 .等式JX1g/x1尿1成立的条件是()A.x>1B.x>-1C.-1<x<1D.x>1或xW-14 ,下列各等式成立的是().A.475x2雷=8褥B.573x4"=20V5C.473x372=775D.5
28、73x4/=20褥上填空题1 .5/1014=.720m,则下落的高为10cm2 .自由落体的公式为S=1gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为2时间是.三、综合提高题1.一个底面为30cmx30cm长方体玻璃容器中装满水,?现将一部分水例入一个底面为正方形、铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.*233(321)33(321)3_,321:321321=38通过上述探究你能猜测出:aJ-2a-=-a1(a>0),并验证你的结论.答案:一、1.B2,C3.A4.D二、1.13、62
29、.12s三、1.设:底面正方形铁桶的底面边长为x,贝Ux2x10=30X30X20,x2=30X30X2,x=痴30x员30后.12/162二次根式的乘除第二课时教学内容、,a-b=(a>0,b>0),反过来(a>0,b>0)及利用它们进行计算和化简.教学目标一一.a理解=、b-(a>0,b>0)和b-、.ab=,(a>0,b>0)及利用它们进行运算.,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行利用具体数据,通过学生练习活动计算和化简.教学重难点关键1.重点:理解Wa=(a>0,b>0),.b,'b亘二叵(a>0,b>0)及利用它们进行计算和化简.b、b2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年杭州医学院单招职业倾向性测试题库含答案
- 2025至2030年中国民用玻璃数据监测研究报告
- 第三单元第二课搜索引擎与在线数据库(教学设计)-2024-2025学年西安交大版(2024)初中信息技术七年级上册
- 血透夜班护理
- 2025至2030年中国无梭普通织带数据监测研究报告
- Unit 6 Lesson 35 Future Transportation2024-2025学年八年级英语上册同步教学设计(冀教版)河北专版
- 第二章匀变速直线运动的研究专题2 竖直上抛运动 教学设计-2023-2024学年高一上学期物理人教版(2019)必修第一册
- MiniLED与OLED技术的比较
- 2025至2030年中国平衡鸟雕塑数据监测研究报告
- 农村宅基地使用权赠与协议书(2025年度)范本与操作流程
- 优秀员工荣誉证书模板
- 仁爱版八年级英语上复习课Unit 2 Keep Healthy Topic1 2教学课件
- 三维电生理导航系统技术参数
- 三年级下册科学活动手册
- 《交通工程CAD》课程教学大纲(本科)
- 人教版数学五年级下册 全册各单元教材解析
- 换班申请表(标准模版)
- 者阴村战友纪念者阴山对越自卫还击作战30周年联谊会计划2
- 基于单片机的电子广告牌设计毕业设计论文
- 承插型盘扣式支模架专项施工方案
- 我国古代职业教育的发展
评论
0/150
提交评论