第二节废水厌氧生物处理原理_第1页
第二节废水厌氧生物处理原理_第2页
第二节废水厌氧生物处理原理_第3页
第二节废水厌氧生物处理原理_第4页
第二节废水厌氧生物处理原理_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二节 废水厌氧生物处理原理废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性微生物的共同作用下,使有机物分解并产生CH 4和CO 2的过程。一、厌氧生物处理中的基本生物过程阶段性理论 1、两阶段理论:20世纪3060年代,被普遍接受的是“两阶段理论”第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO 2和H 2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1生长速率快,2对环境条件的适应性(温度、pH 等强。第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转

2、化为CH 4和CO 2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria ;产甲烷细菌的主要特点是:1生长速率慢,世代时间长;2对环境条件(温度、pH 、抑制物等非常敏感,要求苛刻。2、三阶段理论对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质;厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea ,除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H 2/CO 2等,两碳物质中只有乙酸

3、,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;上世纪70年代,Bryant 发现原来认为是一种被称为“奥氏产甲烷菌”的细菌,实际上是由两种细菌共同组成的,一种细菌首先把乙醇氧化为乙酸和H 2(一种产氢产乙酸细菌,另一种细菌则利用H 2和CO 2产生CH 4(一种真正意义上的产甲烷细菌嗜氢产甲烷细菌;图1厌氧反应的两阶段理论图示内源呼 吸产物碱性发酵阶段酸性发酵阶段水解胞外酶胞内酶产甲烷菌胞内酶产酸菌不溶性有机物 可溶性有机物细菌细 胞脂肪酸、醇类、 H 2、CO 2其它产物细菌细胞CO 2、CH 4因而,Bryant 提出了厌氧消化过程的“三阶段理论”:水解、发酵阶段: 产氢产乙酸阶段

4、:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H 2/CO 2; 产甲烷阶段:产甲烷菌利用乙酸和H 2、CO 2产生CH 4;一般认为,在厌氧生物处理过程中约有70%的CH 4产自乙酸的分解,其余的则产自H 2和CO 2。3、四阶段理论(四菌群学说:几乎与Bryant 提出“三阶段理论”的同时,又有人提出了厌氧消化过程的“四菌群学说”: 实际上,是在上述三阶段理论的基础上,增加了一类细菌同型产乙酸菌,其主要功能是可以将产氢产乙酸细菌产生的H 2/CO 2合成为乙酸。但研究表明,实际上这一部分由H 2/CO 2合成而来的乙酸的量较少,只占厌氧体系中总乙酸量的5%左右。总体来说,“三阶段

5、理论”、“四阶段理论”是目前公认的对厌氧生物处理过程较全面和较准确的描述。4、 多阶段理论 但是,当利用厌氧生物处理工艺处理含有复杂有机物的时候,在厌氧反应器中发生的反应会远比上述“三阶段理论”、“四阶段理论”中所描述的反应过程复杂,可以参见“厌氧复杂体系示意图”。二、厌氧消化过程中的主要微生物主要介绍其中的发酵细菌(产酸细菌、产氢产乙酸菌、产甲烷菌等。1、发酵细菌(产酸细菌:说明:1I 、II 、III 为三阶段理论,I 、II 、III 、 IV 为四类群理论;2所产生的细胞物质未表示在图中 III 发酵性细菌脂肪酸、醇类产氢产乙酸菌II同型产乙酸菌IV有机物乙酸H 2+CO 2CH 4I

6、产甲烷菌图2厌氧反应的三阶段理论和四类群理论发酵产酸细菌的主要功能有两种: 水解在胞外酶的作用下,将不溶性有机物水解成可溶性有机物; 酸化将可溶性大分子有机物转化为脂肪酸、醇类等;主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH 、SRT 、有机物种类等,有时回成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。2、产氢产乙酸菌:产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H 2;为产甲烷细菌提供合适的基质

7、,在厌氧系统中常常与产甲烷细菌处于共生互营关系。主要的产氢产乙酸反应有:乙醇: 232232H COOH CH O H OH CH CH +丙酸:22322332CO H COOH CH O H COOH CH CH + 丁酸:232223222H COOH CH O H COOH CH CH CH +注意:上述反应只有在乙酸浓度很低、系统中氢分压也很低时才能顺利进行,因此产氢产乙酸反应的顺利进行,常常需要后续产甲烷反应能及时将其主要的两种产物乙酸和H 2消耗掉。主要的产氢产乙酸细菌多为:互营单胞菌属、互营杆菌属、梭菌属、暗杆菌属等;多数是严格厌氧菌或兼性厌氧菌。3、产甲烷菌20世纪60年代H

8、ungate 开创了严格厌氧微生物培养技术之后,对产甲烷细菌的研究才得以广泛进行;产甲烷细菌的主要功能是将产氢产乙酸菌的产物乙酸和H 2/CO 2转化为CH 4和CO 2,使厌氧消化过程得以顺利进行;主要可分为两大类:乙酸营养型和H 2营养型产甲烷菌,或称为嗜乙酸产甲烷细菌和嗜氢产甲烷细菌;一般来说,在自然界中乙酸营养型产甲烷菌的种类较少,只有Methanosarcina (产甲烷八叠球菌和Methanothrix (产甲烷丝状菌,但这两种产甲烷细菌在厌氧反应器中居多,特别是后者,因为在厌氧反应器中乙酸是主要的产甲烷基质,一般来说有70%左右的甲烷是来自乙酸的氧化分解;典型的产甲烷反应: 24

9、3CO CH COOH CH + O H CH CO H 242224+ -+-+324224HC CO CH H HCOO 242324CO CH O H CO + O H H HCO CH OH CH 234334+-+-+-434243343399(4NH H HCO CH O H NH CHS H H HCO CH O H S CH 234233233(2+-+-O H CH H OH CH 24234+根据产甲烷菌的形态和生理生态特征,可将其分类如下:最新的分类(Bergys 细菌手册第九版,共分为:三目、七科、十九属、65种;产甲烷菌有各种不同的形态,常见的有:产甲烷杆菌;产甲烷球

10、菌;产甲烷八叠球菌;产甲烷丝菌;等等。在生物分类学上,产甲烷菌(Methanogens 属于古细菌(Archaebacteria ,大小、外观上与普通细菌(Eubacteria 相似,但实际上,其细胞成分特殊,特别是细胞壁的结构较特殊;在自然界的分布,一般可以认为是栖息于一些极端环境中(如地热泉水、深海火山口、沉积物等,但实际上其分布极为广泛,如污泥、瘤胃、昆虫肠道、湿树木、厌氧反应器等;产甲烷菌都是严格厌氧细菌,要求氧化还原电位在-150-400mv ,氧和氧化剂对其有很强的毒害作用;产甲烷菌的增殖速率很慢,繁殖世代时间长,可达46天,因此,一般情况下产甲烷反应是厌氧消化的限速步骤三、厌氧生

11、物处理的影响因素产甲烷反应是厌氧消化过程的控制阶段,因此,一般来说,在讨论厌氧生物处理的影响因素时主要讨论影响产甲烷菌的各项因素;主要影响因素有:温度、pH 值、氧化还原电位、营养物质、F/M 比、有毒物质等。1、温度:温度对厌氧微生物的影响尤为显著;厌氧细菌可分为嗜热菌(或高温菌、嗜温菌(中温菌;相应地,厌氧消化分为:高温消化(55C 左右和中温消化(35C 左右;高温消产甲烷杆菌目产甲烷杆菌科产甲烷球菌目产甲烷球菌科产甲烷微菌目产甲烷微菌科产甲烷八叠球菌科产甲烷杆菌属产甲烷杆短菌属甲酸产甲烷杆菌瘤胃产甲烷杆菌 产甲烷球菌属 范氏产甲烷球菌 产甲烷微菌属产甲烷菌属 产甲烷螺菌属 产甲烷八叠球

12、菌属产甲烷丝菌属运动产甲烷微菌 黑海产甲烷微菌 亨氏产甲烷螺菌 巴氏产甲烷八叠球菌 索氏产甲烷丝菌属化的反应速率约为中温消化的1.51.9倍,产气率也较高,但气体中甲烷含量较低;当处理含有病原菌和寄生虫卵的废水或污泥时,高温消化可取得较好的卫生效果,消化后污泥的脱水性能也较好;随着新型厌氧反应器的开发研究和应用,温度对厌氧消化的影响不再非常重要(新型反应器内的生物量很大,因此可以在常温条件下(2025C进行,以节省能量和运行费用。2、pH值和碱度:pH值是厌氧消化过程中的最重要的影响因素;重要原因:产甲烷菌对pH值的变化非常敏感,一般认为,其最适pH值范围为6.87.2,在<6.5或&g

13、t;8.2时,产甲烷菌会受到严重抑制,而进一步导致整个厌氧消化过程的恶化;厌氧体系中的pH值受多种因素的影响:进水pH 值、进水水质(有机物浓度、有机物种类等、生化反应、酸碱平衡、气固液相间的溶解平衡等;厌氧体系是一个pH值的缓冲体系,主要由碳酸盐体系所控制;一般来说:系统中脂肪酸含量的增加(累积,将消耗-HCO,使pH下降;但产甲烷菌的作用不但可以消耗脂3肪酸,而且还会产生-HCO,使系统的pH值回升。3碱度曾一度在厌氧消化中被认为是一个至关重要的影响因素,但实际上其作用主要是保证厌氧体系具有一定的缓冲能力,维持合适的pH值;厌氧体系一旦发生酸化,则需要很长的时间才能恢复。3、氧化还原电位:

14、严格的厌氧环境是产甲烷菌进行正常生理活动的基本条件;非产甲烷菌可以在氧化还原电位为+100 -100mv的环境正常生长和活动;产甲烷菌的最适氧化还原电位为-150 -400mv,在培养产甲烷菌的初期,氧化还原电位不能高于-330mv;4、营养要求:厌氧微生物对N、P等营养物质的要求略低于好氧微生物,其要求COD:N:P = 200:5: 1;多数厌氧菌不具有合成某些必要的维生素或氨基酸的功能,所以有时需要投加:K、Na、Ca等金属盐类;微量元素Ni、Co、Mo、Fe等;有机微量物质:酵母浸出膏、生物素、维生素等。5、F/M比:厌氧生物处理的有机物负荷较好氧生物处理更高,一般可达510kgCOD

15、/m3.d,甚至可达5080 kgCOD/m3.d;无传氧的限制;可以积聚更高的生物量。产酸阶段的反应速率远高于产甲烷阶段,因此必须十分谨慎地选择有机负荷;高的有机容积负荷的前提是高的生物量,而相应较低的污泥负荷;高的有机容积负荷可以缩短HRT,减少反应器容积。6、有毒物质:常见的抑制性物质有:硫化物、氨氮、重金属、氰化物及某些有机物;硫化物和硫酸盐:硫酸盐和其它硫的氧化物很容易在厌氧消化过程中被还原成硫化物;可溶的硫化物达到一定浓度时,会对厌氧消化过程主要是产甲烷过程产生抑制作用;投加某些金属如 Fe 可以去除 S2-,或从系统中吹脱 H2S 可以减轻硫化物的抑制作用。 氨氮:氨氮是厌氧消化的缓冲剂;但浓度过高,则会对厌氧消化过程产生毒害作用;抑 制浓度为 50200mg/l,但驯化后,适应能力会得到加强。 重金属:使厌氧细菌的酶系统受到破坏。 氰化物: 有毒有机物: 四、厌氧生物处理的主要特征 1、厌氧生物处理过程的主要优点: 能耗大大降低,而且还可以回收生物能(沼气) ; 污泥产量很低; 厌 氧 微 生 物 的 增 殖 速 率 比 好 氧 微 生 物 低 得 多 , 产 酸 菌 的 产 率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论