SeeingthroughMISTgivenaSmallFractionofanRSAPrivate_第1页
SeeingthroughMISTgivenaSmallFractionofanRSAPrivate_第2页
SeeingthroughMISTgivenaSmallFractionofanRSAPrivate_第3页
SeeingthroughMISTgivenaSmallFractionofanRSAPrivate_第4页
SeeingthroughMISTgivenaSmallFractionofanRSAPrivate_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1/16RSA 2003Colin D. Walter, Comodo Research Lab, BradfordSeeing through MIST given a Small Fraction of an RSA Private K2/16RSA 2003Colin D. Walter, Comodo Research Lab, BradfordOverview History The MIST Algorithm Threat Assumptions a Theorem. First Reconstruction of the Key Second Reconstruction of

2、 the Key Conclusion3/16RSA 2003Colin D. Walter, Comodo Research Lab, BradfordHistory C. D. Walter Exponentiation using Division Chains IEEE TC 47, 1998 C. D. Walter MIST: An Efficient, Randomized Exponentiation Algorithm for Resisting Power Analysis CT-RSA 2002, LNCS 2271 C. D. Walter Some Security

3、Aspects of the MIST Randomized Exponentiation Algorithm CHES 2002, LNCS 2523 Boneh, Durfee & Frankel Exposing an RSA Private Key given a Small Fraction of its Bits AsiaCrypt 98, LNCS 15144/16RSA 2003Colin D. Walter, Comodo Research Lab, BradfordReversed m-ary Expn To compute: P = CD mod N Q C ;P

4、 1 ;While D 0 doBegin d D mod m ; If d 0 then P Qd P mod N; Q Qm mod N; D D div m ; Invariant: CD.Init = QD P mod N End ;5/16RSA 2003Colin D. Walter, Comodo Research Lab, BradfordThe MIST Expn Algorithm To compute: P = CD mod N Q C ;P 1 ;While D 0 doBegin Choose a random base m (from 2,3,5, say); d

5、D mod m ; If d 0 then P Qd P mod N; Q Qm mod N; D D div m ; Invariant: CD.Init = QD P mod N End ;6/16RSA 2003Colin D. Walter, Comodo Research Lab, BradfordSecurity StrengthTHEOREM (CHES 2002) After a MIST exponentiation CD mod N using a typical, efficient choice of parameters: The number of exponent

6、s with the same pattern of squares and multiplies is at least D3/5. The number of exponents with the same pattern of operand sharing is about D1/3.With just this information it is computationally infeasible to search for D.We will now improve these results using knowledge of the public modulus N.7/1

7、6RSA 2003Colin D. Walter, Comodo Research Lab, BradfordNotationThe chosen digit/base pairs (di, mi) satisfyD = d0+m0(d1+m1(d2+m2(.dn).) DefineDj = dj+ mj(dj+1+mj+1(dj+2+mj+2(.dn).) j = d0 + m0(d1 + m1 (d2 + m2(.dj1).)j = m0 m1 m2 . mj1Thenj = D mod jDj = D div jD = jDj + j 8/16RSA 2003Colin D. Walte

8、r, Comodo Research Lab, BradfordA First Attack Let N = PQ for primes P and Q of equal bit length.It is easy to show (N) lies in an interval of length D.9/16RSA 2003Colin D. Walter, Comodo Research Lab, BradfordA First Attack contdThe attacker has “guessed” j and j.He then computes an approximation f

9、or Dj = D div jusing his approximation for D. Since D is known to an accuracy with error less than j, Dj (the upper half of D) is determined up to a choice of at most 2 values.So D = jDj+j is determined up to a couple of possibilities and the secret key is obtained.10/16RSA 2003Colin D. Walter, Como

10、do Research Lab, BradfordA First Attack contdBy the theorem applied to the lower half of D, the number of choices for digit/base pairs is about N3/10 or N1/6 depending on how much we assume the attacker knows.He has E choices for approximating D and perhaps 232 extra choices if a 32-blinding factor

11、is introduced.Hence the search space is reduced to about 232EN3/10 or 232EN1/6 if the Sqr & Mult or op. sharing pattern is known.11/16RSA 2003Colin D. Walter, Comodo Research Lab, BradfordA First Attack - conclusion Of course, N3/10 and N1/6 are still over 100 bits for sensible key lengths and s

12、o, even without key blinding, this attack is computationally infeasible. The first attack given in the proceedings tackles the similar, but more complex, case of assuming the most significant digits are guessed instead of the least significant.12/16RSA 2003Colin D. Walter, Comodo Research Lab, Bradf

13、ordA First Attack - as in paper If the most significant part Dj is guessed then D div Dj = j is known almost exactly. j is a product of powers of 2, 3, 5 only. This property is so rare that the correct Dj is easily determined. The next digit/base pair (dj1, mj1) is chosen to give j1 the same propert

14、y usually unique. So Dj, Dj1, Dj2, ., D1, D0 = D are all obtained, and the key recovered.13/16RSA 2003Colin D. Walter, Comodo Research Lab, BradfordThe Second Attack This attack uses the Boneh et al. results (derived from Coppersmith) to reduce the dimension of the search space by a factor of 4 inst

15、ead of 2. Theorem. Suppose N = PQ, N1/4 and P mod is known. Then it is possible to factor N in time polynomial in log(N). Boneh uses this with as a power of 2. We take as a product of base choices m. Specifically, = j for a large enough j.14/16RSA 2003Colin D. Walter, Comodo Research Lab, BradfordSe

16、cond Attack contd If there is no key blinding, DE = 1+k(N) for some k E where (N) = (P1)(N/P1). Reducing mod changes unknown D to the guessed j and P to x = P mod , say. Now DE = 1+k(N) reduced mod becomes a quadratic equation in x. We solve for x using CRT. Generally, there are 16 solutions or none

17、 (if 2335 divides ). Now we can apply the theorem to factor N.15/16RSA 2003Colin D. Walter, Comodo Research Lab, BradfordSecond Attack conclusion There are N3/20 or N1/12 pattern-matching cases of j N to consider; E possible choices for 1+k(N); B possible blinding factors, say (typically B = 232); l

18、og(N) time to construct & find roots of quadratic; log(N)-polynomial time to factorise N; We conclude that N can be factored in time BEN3/20 or BEN1/12 times a poly in log(N). For no blinding, small E & short key this may be computationally feasible.16/16RSA 2003Colin D. Walter, Comodo Research Lab, Bradford

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论