下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、133等腰三角形等腰三角形安口镇中学杨立鑫133.1等腰三角形等腰三角形第第 1 课时课时等腰三角形的性质等腰三角形的性质教学目标1理解并掌握等腰三角形的性质(重点)2经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题(难点)3.培养学生分析问题和解决问题的能力.4.培养学生学习数学的兴趣,并将数学应用于生活当中.教学过程一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的ABC有什么特点?二、合作探究探究点一:等腰三角形的概念【类型一】 利用等腰三角形的概念求边长或周长如果等腰三角形两边长是 6cm 和 3cm,那么它的周长是()A9cm
2、B12cmC15cm 或 12cmD15cm解析:当腰为 3cm 时,336,不能构成三角形,因此这种情况不成立当腰为 6cm时,63663,能构成三角形;此时等腰三角形的周长为 66315(cm)故选 D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去探究点二:等腰三角形的性质【类型一】 利用“等边对等角”求角度等腰三角形的一个内角是 50,则这个三角形的底角的大小是()A65或 50B80或 40C65或 80D50或 80解析:当 50的角是底角时,三角形的底角就是 50;当 50的角是顶角时,两
3、底角相等,根据三角形的内角和定理易得底角是 65.故选 A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论【类型二】 利用方程思想求等腰三角形角的度数如图,在ABC中,ABAC,点D在AC上,且BDBCAD,求ABC各角的度数解析:设Ax,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数解:设Ax.ADBD,ABDAx.BDBC,BCDBDCABDA2x.ABAC,ABCBCD2x.在ABC中,AABCACB180,x2x2x180,x36,A36,ABCACB72.方法总结: 利用等腰三角形的性质和三角形外角的性质可以得到角与角之间
4、的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x.【类型三】 利用“等边对等角”的性质进行证明如图,已知ABC为等腰三角形,BD、CE为底角的平分线,且DBCF,求证:ECDF.解析:先由等腰三角形的性质得出ABCACB,根据角平分线定义得到DBC12ABC,ECB12ACB,那么DBCECB,再由DBCF,等量代换得到ECBF,于是根据平行线的判定得出ECDF.证明:ABC为等腰三角形,ABAC,ABCACB.又BD、CE为底角的平分线,DBC12ABC,ECB12ACB,DBCECB.DBCF,ECBF,ECDF.方法总结:证明线段的平行关系,
5、主要是通过证明角相等或互补【类型四】 利用等腰三角形“三线合一”的性质进行证明如图,点D、E在ABC的边BC上,ABAC.(1)若ADAE,求证:BDCE;(2)若BDCE,F为DE的中点,如图,求证:AFBC.解析:(1)过A作AGBC于G,根据等腰三角形的性质得出BGCG,DGEG即可证明;(2)先证BFCF,再根据等腰三角形的性质证明证明:(1)如图,过A作AGBC于G.ABAC,ADAE,BGCG,DGEG,BGDGCGEG,BDCE;(2)BDCE,F为DE的中点,BDDFCEEF,BFCF.ABAC,AFBC.方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶
6、角平分线、底边上的高、底边上的中线是常见的辅助线【类型五】 与等腰三角形的性质有关的探究性问题如图,已知ABC是等腰直角三角形,BAC90,BE是ABC的平分线,DEBC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由(3)如果BC10,求ABAE的长解析:(1)由ABC是等腰直角三角形,BE为角平分线,可证得ABEDBE,即ABBD,AEDE,所以ABD和ADE均为等腰三角形;由C45,EDDC,可知EDC也符合题意;(2)BE是ABC的平分线,DEBC,根据角平分线定理可知ABE关于BE与DBE对称,可得出BEAD;(3)根据(2),可知ABE关于
7、BE与DBE对称,且DEC为等腰直角三角形,可推出ABAEBDDCBC10.解:(1)ABC,ABD,ADE,EDC.(2)AD与BE垂直证明:由BE为ABC的平分线,知ABEDBE,BAEBDE90,BEBE,ABEDBE,ABE沿BE折叠,一定与DBE重合,A、D是对称点,ADBE.(3)BE是ABC的平分线,DEBC,EAAB,AEDE.在 RtABE和 RtDBE中,AEDE,BEBE,RtABERtDBE(HL),ABBD.又ABC是等腰直角三角形,BAC90,C45.又EDBC,DCE为等腰直角三角形,DEDC,ABAEBDDCBC10.三、板书设计1等腰三角形的性质2解题方法:设辅助未知数法与拼凑法3重要的数学思想方法:方程思想、整体思想和转化思想教学反思本节课由于采用了直观操作以及讨论交流等教学方法, 从而有效地增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧解决方案:智能城市管理
- 消防应急避险
- 3.2.3离子反应 课件 高一上学期化学苏教版(2019)必修第一册
- 糖尿病个人教育与护理
- 传统毛笔课件教学课件
- 日常生活食品安全
- 生产安全事故案例培训教材
- 布谷鸟节奏游戏教案反思
- 弧度制说课稿
- 海水的运动说课稿
- 2024中国铁塔集团湖南分公司招聘24人高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024年保安员资格考试模拟练习题及答案
- (高清版)JT∕T 1402-2022 交通运输行政执法基础装备配备及技术要求
- 中华联合保险集团股份有限公司行测笔试题库2024
- 印刷服务 投标方案(技术方案)
- 创新创业创造:职场竞争力密钥智慧树知到期末考试答案章节答案2024年上海对外经贸大学
- 必修一《数据与计算》复习提纲与练习题
- 三级公立医院绩效考核微创手术目录(2022版)
- 危险驾驶罪课件讲解
- HJ 704-2014 土壤 有效磷的测定 碳酸氢钠浸提-钼锑抗分光光度法
- 四年级寒假奥数培优讲义-4-04-倒推法解题4-讲义-教师
评论
0/150
提交评论