版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4.1 4.1 引言引言 4.2 4.2 线性连续系统的能控性线性连续系统的能控性 4.3 4.3 线性连续系统的能观测性线性连续系统的能观测性4.4 4.4 线性定常离散系统的能控线性定常离散系统的能控 性和能观测性性和能观测性 4.5 4.5 能控标准形和能观测标准形能控标准形和能观测标准形 4.6 4.6 系统能控性和能观测性的对偶原理系统能控性和能观测性的对偶原理4.7 4.7 线性系统的结构性分解线性系统的结构性分解4.8 4.8 能控性和能观测性与传递函数(阵)的关系能控性和能观测性与传递函数(阵)的关系 4.9 4.9 系统的实现问题系统的实现问题4.10 MATLAB4.10
2、MATLAB在能控性和在能控性和能观测性分析中的应用能观测性分析中的应用 4.1 4.1 引言引言线性系统的能控性(controllability) 加入适当的控制作用后,能否在有限时间内将系统从任一初始状态转移到希望的状态上,即系统是否具有通过控制作用随意支配状态的能力。 线性系统的能观测性(observability) 通过在一段时间内对系统输出的观测,能否判断系统的初始状态,即系统是否具有通过观测系统输出来估计状态的能力。 4.2 4.2 线性连续系统的能控性线性连续系统的能控性 状态能控性反映输入 对状态 的控制能力。如果状态变量 由任意初始时刻的任意初始状态引起的运动都能由输入(控制
3、项)来影响,并能在有限时间内控制到空间原点,那么称系统是能控的,或者更确切地说,是状态能控的。否则,就称系统为不完全能控的。( )u t( ) tx( ) tx【例例4 41 1】某电桥系统的模型如图4-1所示 。该电桥系统中,电源电压 为输入变量,并选择两电容器两端的电压为状态变量 和 。试分析电源电压 对两个状态变量的控制能力。( )u t1( )x t2( )x t( )u t解:解:由电路理论知识可知,若图4-1所示的电桥系统是平衡的(例),电容 的电压 是不能通过输入电压 改变的,即状态变量 是不能控的,则系统是不完全能控的。若图4-1所示的电桥系统是不平衡的,两电容的电压 和 可以
4、通过输入电压 控制,则系统是能控的。由状态空间模型来看,当选择两电容器两端电压为状态变量 和 时,可得如下状态方程:1( )x t2( )x t( )u t2C2( )x t2( )x t( )u t1( )x t2( )x t1111222111xxuRCRCxxRC 由上述状态方程可知,状态变量 的值,即电桥中电容 的电压,是自由衰减的,并不受输入的控制。因此,该电压的值不能在有限时间内衰减至零,即该状态变量是不能由输入变量控制到原点。具有这种特性的系统称为状态不能控的。 2( )x t2C4.2.2 4.2.2 状态能控性的定义状态能控性的定义考虑线性时变系统的状态方程( ) ( )(
5、)tttxAxBu( )( ) ( )( ) ( )tttttyCxDu00( )txxdtT其中, 为 维状态向量, 为 维输入向量, 为时间定义区间, 分别为 和 的元为 的连续函数的矩阵。 xnurdT,A Bn nn rt能控性定义 1状态能控0dtT0 x1dtT10tt( )u t01,ttt0 xNoImage1( )0 x t0 x0t对线性时变系统,如果对取定初始时刻 的一个非零初始状态 ,存在一个时刻 , ,和一个无约束的的容许控制 , ,使状态由 转移到 时 ,则称此 在 时刻是能控的。 能控性定义 2系统能控0t0t0t0dtT0dtT对线性时变系统,如果状态空间中的所
6、有非零状态都是在时刻为能控的,则称系统在时刻是状态完全能控的,能控。如果系统对于任意的均是状态完全能控的(即系统的能控性与初始时刻的选取无关),则称系统是一致能控的。简称系统在时刻能控性定义 3系统不完全能控 0dtT0t0t取定初始时刻,如果状态空间中存在是不能控的,则称是不完全能控的,简称系统不能控。 一个或一些非零状态在时刻系统在时刻能控性定义 0( )0tx11( )txx01( ), , t tt tu1x0t1x1x0t0t0t若存在能将状态转移到的控制作用,则称状态是时刻能达的。若对所有时刻都是能达的,则称状态为完全能达或一致能达。能达的,时刻状态能达的,简称系统是时刻能达的。
7、若系统对于状态空间中的每一个状态都是时刻则称系统是4状态与系统能达 定义的几点解释 dT0t(1)对轨迹不加限制,是表征系统状态运动的一种定性特性;(2)容许控制的分量幅值不加限制,且在(3)线性系统的能控性与(4)如果将上面非零状态转移到零状态,改为零状态到非上平方可积;无关;零状态,则称为系统的能达性。(5)系统不完全能控为一种“奇异”情况。4.2.3 4.2.3 线性定常连续系统的状态能控性判别线性定常连续系统的状态能控性判别一、格拉姆矩阵判据一、格拉姆矩阵判据 , (0),0t0 x = Ax+ Bu xx10t 110(0, )dTttTtcteetAAWBB线性定常连续系统 状态完
8、全能控的充分必要条件是存在时刻,使如下定义的格拉姆矩阵 为非奇异。 x = Ax+ Bum nn r2-1ncQ = BABA BLAB2-1rankrankncnQBABA BAB二、秩判据二、秩判据设线性定常连续系统的状态方程为 式中,x为n维状态向量,u为r维输入向量, A,B分别为、常数阵。 满秩,即系统状态完全能控的充分必要条件是能控性判别矩阵 321001000101aaa xxu212121001011AAaaaa bbb2121210010131rankQrank bAbA brankancaaa12,a a【例例4 41 1】 试判断如下系统的状态能控性解: 由状态能控性的代
9、数判据有故它是一个三角形矩阵,斜对角线元素均为1,不论取何值,其秩为3,故系统状态完全能控。1L1i1C1cu【例例】电路如图所示。其中,u为输入,i为输出,流经电感的电流和电容上的电压为状态变量,分析系统的能控性。 解:111 12 1111ddddddccciLRiutuR cuutuicit令1121,cxi xuyi整理以上三式得向量矩阵形式的系统状态空间表达式为11111222121122210110111RLLxxuxxR CR CxyuxRR111122121111()cRLL LR CR CQBAB12111RR CLcQ当满足时,满秩,系统能控,否则不能控。 三、约当标准形判
10、据三、约当标准形判据对为约当标准形的线性定常连续系统( , )A B1若A为每个特征值都只有一个约当块的约当矩阵,则系统 能控的充要条件为: 对应A的每个约当块的B的分块的最后一行都不全为零;2若A为某个特征值有多于一个约当块的约当矩阵,则系统,有:能控的充要条件为:对应A的每个特征值的所有约当块的B的分块的最后一行线性无关。1122102025xxuxx 112233110001040023xxxxuxx 1122133244552100010210000230510000521xxxxuxxuxxxx【例例4 45 5】 下列系统是状态能控的:1122102020 xxuxx 111222
11、33110420100000230 xxuxxuxx112233445521004021200215130050 xxxxxxuxxxx 下列系统是状态不能控的: 四、PBH 判据, (0),0t0 x = Ax+ Bu xxA(1, ),iin,irankIABn1,in,rank sIABnsC ()sIAB线性定常连续系统 系统为完全能控的充要条件是,对矩阵 的所有特征值 均成立 ,或等价地 也即和是左互质的。表4-1 能控性判据对比表,判据判定方法特点格拉姆矩阵判据的各行函数线性独立需要求矩阵指数函数并判定函数相关,计算复杂秩判据满秩1.计算简便可行。2.缺点为不知道状态空间中哪些变量
12、(特征值/极点)能控约当标准形判据约当标准形中同一特征值对应的B矩阵分块的最后一行线性无关1.易于分析状态空间中哪些变量(特征值/极点)能控。2.缺点为需变换成约当标准形PBH 判据1.易于分析哪些特征值(极点)能控。2.缺点为需求系统的特征值4.2.4 线性定常连续系统的输出能控性x = Ax+ Buy = Cx+ Du( )u t01 ,t t0( )ty1( )ty一、输出能控性定义一、输出能控性定义 设线性定常连续系统式中, x为n维状态向量,u为r维输入向量,y为m维输出向量。 若存在一个无约束的容许控制,在有限的时间间隔内,能转移到任一指定的期望的最终输出,则称系统是输出完全能控的
13、,简称输出能控。 将任一初始输出x = Ax+ Buy = Cx+ Du线性定常连续系统二、输出能控性判据二、输出能控性判据 n-1mQ = CBCABCABDmrankrankmn-1QCBCABCABD其输出完全能控的充分必要条件是输出能控性判别矩阵的秩等于输出向量的维数m,即 0010011 10 xxuyxu 2 0 01rank CB CAB Drankm 【例例4 48 8】 试判断如下系统的输出能控性解: 由输出能控性的代数判据有故系统输出完全能控。 例 判断系统是否具有状态能控性和输出能控性。 11221241123210 xxuxxxyx 秩为1,等于输出变量的个数,因此系统
14、是输出能控的。4221ABB 120CBCAB 秩为1,所以系统是状态不能控的。 )()()()()(tutBtxtAtx10TTC0100( , )( , ) ( )( )( , )dttW t ttBBt线性时变系统线性时变系统在定义时间区间在定义时间区间t0,t1t0,t1内,状态完全能控的充要条件内,状态完全能控的充要条件是是GramGram矩阵矩阵非奇异。式中非奇异。式中 为时变系统状态转移矩阵。为时变系统状态转移矩阵。 0( , )t t4.2.5 4.2.5 线性时变连续系统的状态能控性线性时变连续系统的状态能控性一、格拉姆矩阵判据 二、能二、能控性判据判据0t1t10tt( (
15、 ),( )A tB t01 , t t111( )( )( )( )( )( )2,3,.,iiiB tB tB tA t BtBtin 12( )( )( ).( )cnQ tB tB tB t( )cQ t12rank( )rank( )( ).( )cnQ tB tB tB tn0t若对初始时刻,在时间 (),使得线性时变连续系统的系统矩阵A(t)和输入矩阵B(t)中的各元素在内对时间t分别是(n-2)和(n-1)阶连续可导, 再定义如下线性时变系统的能控性矩阵若能控性矩阵满足则称时变系统在初始时刻上状态完全能控。时间区间定义例例4.4.14.4.1 1122233100001001x
16、txxtxuxtx 00( )( )11M tB t 10021d( )( )( )( )dM tA t M tM tttt 2221144202d( )( )( )( )11d22ttMtA t M tM tttttttt 012( )( )( )MtM tMt秩为秩为3,所以系统是完全能控,所以系统是完全能控4.3 4.3 线性连续系统的能观测性线性连续系统的能观测性 本节主要讨论线性定常连续系统的状态能观测性问题。关键问题: 基本概念: 状态能观测性; 基本方法: 状态能观测性的判别方法;1.状态能观测性的物理意义和在状态空间中的几何意义。4. 3. 1 4. 3. 1 能观测性的直观讨
17、论能观测性的直观讨论 状态能观测性反映系统外部可直接或间接测量的输出 和输入 来确定或识别系统状态的能力。如果系统的任何内部运动状态变化都可由系统的外部输出和输入唯一地确定,那么称系统是能观测的,或者更确切地说,是状态能观测的。否则,就称系统为状态不完全能观测的。( )y t( )u t4.3.2 4.3.2 状态能观状态能观测性的定义性的定义00, ( ),dxAxttTyCxxx,nmn nm nxRyRARCR考虑零输入时的状态空间表达式 (4-15)如果每一个状态x(to)都可通过在有限时间间隔tott1内,由y(t)观测值确定,则称系统为(完全)能观测的。不失一般性,设to=0。 式
18、中,考虑式(4-15)所描述的零输入系统 1 1状态能观测状态能观测0dtT1dtT10tt01 , tt t( ) ty0 x0 x0t对于式(对于式(4-154-15)所示线性时变连续系统,如果取定初始时刻)所示线性时变连续系统,如果取定初始时刻,存在一个有限时刻,存在一个有限时刻,对于所有的,对于所有的系统的输出系统的输出能惟一确定一个非零的初始状态向量能惟一确定一个非零的初始状态向量则称此非零状态则称此非零状态在在时刻是能观测的。时刻是能观测的。 0dtT1dtT10tt01 , tt t( ) ty0t0 x0t0dtT2 2系统能观测系统能观测 对于式(4-15)所示线性时变连续系统,如果指定初始时刻,存在一个有限时刻, 对于所有,系统的输出能惟一确定时刻的任意非零的,则称系统在时刻状态是完全能观测,简称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 住房买卖协议
- 公园设施维护协议
- 2025山林地承包合同范本
- 2025房屋租赁合同电子版房屋租赁合同常用版
- 水暖工程安装施工合同工装
- 建筑地板时间合同
- 文具办公壁挂炉施工安装协议
- 学校体育设施网球场工程合同
- 深化产学研合作:创新办学策略与执行方案
- 地铁供电系统外线施工合同
- 2024-2030年中国不锈钢生物反应器行业市场发展趋势与前景展望战略分析报告
- 物联网系统建模与仿真智慧树知到期末考试答案章节答案2024年长春大学
- 康复治疗技术的职业规划课件
- GB 32032-2024金矿开采、选冶和金精炼单位产品能源消耗限额
- 手术部位标识标准
- 西方艺术英语作文
- 耳机基本知识入门培训资料
- 2024年新《劳动法》与《劳动合同法》知识考试题库(附答案)
- MOOC 概率论与数理统计-西安科技大学 中国大学慕课答案
- 中医养生学课件
- MOOC 传热学-西安交通大学 中国大学慕课答案
评论
0/150
提交评论