版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、WORD格式1知识点 1:一元二次方程的根本概念1一元二次方程3x2+5x-2=0 的常数项是 -2.22一元二次方程3x +4x-2=0 的一次项系数为4,常数项是 -2.23一元二次方程3x -5x-7=0 的二次项系数为3,常数项是 -7.24把方程3x(x-1)-2=-4x化为一般式为3x -x-2=0.知识点 2:直角坐标系与点的位置1直角坐标系中,点A 3, 0在 y 轴上。2直角坐标系中,x 轴上的任意点的横坐标为0.3直角坐标系中,点A 1, 1在第一象限 .4直角坐标系中,点A -2, 3在第四象限.5直角坐标系中,点A -2, 1在第二象限.知识点 3:自变量的值求函数值1
2、当 x=2 时 ,函数 y=2x3 的值为1.2当 x=3 时 ,函数 y=1的值为 1.x23当 x=-1 时 ,函数 y=1的值为 1.2 x3知识点 4:根本函数的概念及性质1函数 y=-8x 是一次函数 .2函数 y=4x+1 是正比例函数.13函数yx 是反比例函数.224抛物线y=-3(x-2) -5 的开口向下 .5抛物线y=4(x-3) 2 -10 的对称轴是x=3.6抛物线y11)22的顶点坐标是 (1,2).(x27反比例函数y2的图象在第一、三象限 .x知识点 5:数据的平均数中位数与众数1数据 13,10,12,8,7 的平均数是10.2数据 3,4,2,4,4 的众数
3、是4.3数据 1, 2, 3, 4, 5 的中位数是3.知识点 6:特殊三角函数值31 cos30° =.22 sin 260°+ cos260° = 1.3 2sin30° + tan45° = 2.4 tan45° = 1.5 cos60° + sin30 °= 1.专业资料整理WORD格式2知识点 7:圆的根本性质1半圆或直径所对的圆周角是直角.2任意一个三角形一定有一个外接圆.3在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4在同圆或等圆中,相等的圆心角所对的弧相等.5同弧所
4、对的圆周角等于圆心角的一半.6同圆或等圆的半径相等.7过三个点一定可以作一个圆.8长度相等的两条弧是等弧.9在同圆或等圆中,相等的圆心角所对的弧相等.10经过圆心平分弦的直径垂直于弦。知识点 8:直线与圆的位置关系1直线与圆有唯一公共点时,叫做直线与圆相切.2三角形的外接圆的圆心叫做三角形的外心.3弦切角等于所夹的弧所对的圆心角.4三角形的内切圆的圆心叫做三角形的内心.5垂直于半径的直线必为圆的切线.6过半径的外端点并且垂直于半径的直线是圆的切线.7垂直于半径的直线是圆的切线.8圆的切线垂直于过切点的半径.知识点 9:圆与圆的位置关系1两个圆有且只有一个公共点时,叫做这两个圆外切.2相交两圆的
5、连心线垂直平分公共弦.3两个圆有两个公共点时,叫做这两个圆相交.4两个圆内切时,这两个圆的公切线只有一条.5相切两圆的连心线必过切点.知识点 10:正多边形根本性质1正六边形的中心角为60°.2矩形是正多边形.3正多边形都是轴对称图形.4正多边形都是中心对称图形.知识点 11:一元二次方程的解1方程 x 240 的根为.A x=2B x=-2C x1=2,x2=-2D x=42方程 x2-1=0 的两根为.A x=1B x=-1C x1=1,x 2=-1D x=23方程 x-3 x+4 =0 的两根为.A.x 1=-3,x 2=4B.x 1=-3,x 2=-4C.x1=3,x 2=4
6、D.x 1=3,x 2=-44方程 x(x-2)=0的两根为.A x1=0,x2=2Bx1=1,x 2=2C x1=0,x2 =-2D x1=1,x2 =-2专业资料整理WORD格式35方程 x2-9=0 的两根为.A x=3B x=-3C x1=3,x 2=-3D x1=+3 ,x2=-3知识点 12:方程解的情况及换元法1一元二次方程4 x23x20 的根的情况是.A. 有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D. 没有实数根2不解方程 ,判别方程3x2-5x+3=0 的根的情况是.A. 有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根3不
7、解方程 ,判别方程3x2+4x+2=0 的根的情况是.A. 有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根4不解方程 ,判别方程4x2+4x-1=0 的根的情况是.A. 有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根5不解方程 ,判别方程5x2-7x+5=0 的根的情况是.A. 有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根6不解方程 ,判别方程5x2+7x=-5 的根的情况是.A. 有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根2D. 没有实数根7不解方程 ,判别方程的根的情况是.
8、x +4x+2=0A. 有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根8. 不解方程 ,判断方程2+1=25y 的根的情况是5yA. 有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根x25(x3)x 2= y,于是原方程变为.9. 用换元法解方程3x24 时,令xx322-5y-4=02D.y2A.y -5y+4=0B.yC.y -4y-5=0+4y-5=0x 25( x3)x3= y ,于是原方程变为.10. 用换元法解方程x 24 时,令2x 3xA.5y 2 -4y+1=0B.5y 2 -4y-1=0C.-5y 2 -4y-1
9、=0D. -5y 2 -4y-1=011. 用换元法解方程 (x)2 -5(x)+6=0 时,设x=y ,那么原方程化为关于y 的方程是.x 1x1x1A.y 2+5y+6=0B.y2-5y+6=0C.y2+5y-6=0D.y 2-5y-6=0知识点 13:自变量的取值X围专业资料整理WORD格式1函数yx2 中,自变量x 的取值X围是.专业资料整理WORD格式4A.x 2B.x -2C.x -2D.x -22函数 y=1的自变量的取值X围是.x3A.x>3B. x 3C. x 3D. x 为任意实数3函数 y=1的自变量的取值X围是.x1A.x -1B. x>-1C. x 1D.
10、 x -14函数 y=1的自变量的取值X围是.x1A.x 1B.x 1C.x 1D.x 为任意实数5函数 y=x5 的自变量的取值X围是.2A.x>5B.x 5C.x 5D.x 为任意实数知识点 14:根本函数的概念1以下函数中 ,正比例函数是.A. y=-8xB.y=-8x+1C.y=8x 2+1D.y=8x2以下函数中,反比例函数是.A. y=8x2B.y=8x+1C.y=-8xD.y=-8x28.其中,一次函数有个 .3以下函数:y=8x;y=8x+1;y=-8x;y=-xA.1 个B.2 个C.3 个D.4 个A知识点 15:圆的根本性质O1如图,四边形ABCD 内接于 O, C
11、=80 ° ,那么 A 的度数是."AA. 50°B. 80°BDCOC. 90°D. 100 °"2:如图,O 中, 圆周角 BAD=50 ° ,那么圆周角 BCD 的度数是 .ABDA.100 °B.130 °C.80°D.50 °C3:如图,O 中, 圆心角 BOD=100° ,那么圆周角 BCD 的度数是."A.100 °B.130 °C.80°D.50 °OBD4:如图,四边形ABCD 内接于 O,那么以下
12、结论中正确的选项是.CA. A+ C=180°B.A+ C=90°AC. A+ B=180 °D. A+ B=90"5半径为 5cm 的圆中 ,有一条长为 6cm 的弦 ,那么圆心到此弦的距离为.O"A.3cmB.4cmC.5cmD.6cmBD6:如图,圆周角 BAD=50 °,那么圆心角 BOD 的度数是.CA.100 °B.130 °C.80°D.50AC7:如图,O 中,弧 AB 的度数为 100° ,那么圆周角 ACB 的度数是.OA.100 °B.130 °C.20
13、0°D.50O""B8. :如图,O中, 圆周角 BCD=130 °,那么圆心角 BOD 的度数是.DBACA.100 °B.130 °C.80°D.50 °专业资料整理WORD格式59. 在 O 中 ,弦 AB 的长为 8cm,圆心 O 到 AB 的距离为3cm,那么 O 的半径为cm.A.3B.4C.5D. 1010. :如图,O中,弧 AB 的度数为 100°,那么圆周角 ACB 的度数是.A.100 °B.130 °C.200°D.50 °12在半径为5cm
14、 的圆中 ,有一条弦长为6cm,那么圆心到此弦的距离为.A. 3cmB. 4 cmC.5 cmD.6 cmCO"AB专业资料整理WORD格式知识点 16:点、直线和圆的位置关系1 O 的半径为10 ,如果一条直线和圆心O 的距离为10 ,那么这条直线和这个圆的位置关系为 .A. 相离B.相切C.相交D. 相交或相离2圆的半径为6.5cm,直线 l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是.A. 相切B.相离C.相交D. 相离或相交3圆 O 的半径为 6.5cm,PO=6cm,那么点 P 和这个圆的位置关系是A. 点在圆上B. 点在圆内C. 点在圆外D.不能确定4圆的半径
15、为6.5cm,直线 l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是.A.0 个B.1 个C.2 个D.不能确定5一个圆的周长为a cm,面积为 a cm2,如果一条直线到圆心的距离为 cm,那么这条直线和这个圆的位置关系是.A. 相切B.相离C.相交D. 不能确定6圆的半径为6.5cm,直线 l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是.A. 相切B.相离C.相交D.不能确定7. 圆的半径为6.5cm,直线 l 和圆心的距离为 4cm,那么这条直线和这个圆的位置关系是.A. 相切B.相离C.相交D. 相离或相交8. O 的半径为 7cm,PO=14cm,那么
16、PO的中点和这个圆的位置关系是.A. 点在圆上B. 点在圆内C. 点在圆外D.不能确定知识点 17:圆与圆的位置关系1 O1和 O2的半径分别为3cm 和 4cm,假设 O1O2=10cm ,那么这两圆的位置关系是.A. 外离B. 外切C. 相交D.内切2 O1、 O2的半径分别为3cm 和 4cm,假设 O1O2=9cm, 那么这两个圆的位置关系是.A. 内切B. 外切C.相交D.外离3 O1、 O2的半径分别为3cm 和 5cm,假设 O1O2=1cm, 那么这两个圆的位置关系是.A. 外切B.相交C.内切D. 内含4 O1、 O2的半径分别为3cm 和 4cm,假设 O1O2=7cm,
17、那么这两个圆的位置关系是.A. 外离B. 外切C.相交D. 内切5 O1、 O2的半径分别为3cm 和 4cm,两圆的一条外公切线长4 3,那么两圆的位置关系是.A. 外切B. 内切C.内含D. 相交6 O1、 O2的半径分别为2cm 和 6cm,假设 O1O2=6cm, 那么这两个圆的位置关系是.A. 外切B.相交C.内切D. 内含知识点 18:公切线问题1如果两圆外离,那么公切线的条数为.A.1 条B.2 条C.3条D.4条专业资料整理WORD格式62如果两圆外切,它们的公切线的条数为.A.1 条B.2 条C.3 条D.4 条3如果两圆相交,那么它们的公切线的条数为.A.1 条B.2 条C
18、.3 条D.4 条4如果两圆内切,它们的公切线的条数为.A.1 条B.2 条C.3 条D.4 条5. O1、 O2的半径分别为 3cm 和 4cm,假设 O1O2=9cm, 那么这两个圆的公切线有条 .A.1 条B.2 条C.3条D.4条6 O1、 O2的半径分别为 3cm 和 4cm,假设 O1O2=7cm, 那么这两个圆的公切线有条 .A.1 条B.2 条C.3条D.4条知识点 19:正多边形和圆1如果 O 的周长为10 cm,那么它的半径为.A. 5cmB. 10 cmC.10cmD.5 cm2正三角形外接圆的半径为2,那么它内切圆的半径为.A. 2B.3C.1D.23 ,正方形的边长为
19、 2,那么这个正方形内切圆的半径为.A. 2B. 1C. 2D.32,半径为 2,那么这个扇形的圆心角为 =.4扇形的面积为3A.30 °B.60°C.90°D. 120°5 ,正六边形的半径为R,那么这个正六边形的边长为.1B.RC. 2RD.3RA. R26圆的周长为 C,那么这个圆的面积 S=.A. C2B.C2C.C2D. C2247正三角形内切圆与外接圆的半径之比为.A.1:2B.1:3C.3 :2D.1: 28. 圆的周长为 C,那么这个圆的半径R=.A.2 CB.CC.CCD.29. ,正方形的边长为2,那么这个正方形外接圆的半径为.A.2
20、B.4C.22D.2310 ,正三角形的半径为3,那么这个正三角形的边长为.A. 3B.3C.3 2D.33专业资料整理WORD格式知识点 20:函数图像问题专业资料整理WORD格式71:关于 x 的一元二次方程 ax 2bx c3 的一个根为 x2,且二次函数 yax 2bx c 的对称轴1是直线 x=2,那么抛物线的顶点坐标是.A. (2 , -3)B. (2 ,1)C. (2,3)D. (3,2)2假设抛物线的解析式为y=2(x-3) 2+2, 那么它的顶点坐标是.A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)3一次函数 y=x+1的图象在.A. 第一、二、三象限B.
21、第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限4函数 y=2x+1 的图象不经过.A. 第一象限B. 第二象限C. 第三象限D. 第四象限5反比例函数 y=2 的图象在.xA. 第一、二象限B. 第三、四象限 C. 第一、三象限D. 第二、四象限6反比例函数 y=-10 的图象不经过.xA 第一、二象限B. 第三、四象限 C. 第一、三象限D. 第二、四象限7假设抛物线的解析式为y=2(x-3) 2+2, 那么它的顶点坐标是.A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)8一次函数 y=-x+1 的图象在.A第一、二、三象限B. 第一、三、四象限C. 第一、二、
22、四象限D. 第二、三、四象限9一次函数 y=-2x+1的图象经过.A第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限10. 抛物线 y=ax2+bx+c a>0 且 a、b、c 为常数的对称轴为 x=1,且函数图象上有三点A(-1,y 1)、B(1,y2)、2C(2,y 3),那么 y1、 y2、 y3的大小关系是.A.y 3<y1<y 2B. y 2<y 3<y 1C. y3<y 2<y 1D. y1<y 3<y 2知识点 21:分式的化简与求值1计算:(xy4 xy )( xy4xy ) 的正确结果为.xyx
23、 yA. y2x2B. x2y 2C. x24 y 2D. 4 x2y 22.计算: 1-a11)2a2a1的正确结果为.aa 22a1A. a2aB. a2aC. - a2aD. - a2a3.计算:x2(12 )的正确结果为.x 2xA.xB. 1C.-1D. - x 2xxx专业资料整理WORD格式84.计算:(11) (11)的正确结果为.xx211A.1B.x+1x1D.1C.xx15计算(x1)( 11) 的正确结果是.x 11xxxB.-xC.xD.-xA.111x 1xxx6.计算(xyx)( 11 ) 的正确结果是.xyyxyxyB. -xyC.xyD.-xyA.xyxyxy
24、x y7. 计 算 :( xy)x 2y 22x 2 y2xy 2的正确结果为. A.x-yB.x+yy2x2xyx22xyy2C.-(x+y)D.y-x专业资料整理WORD格式x118.计算:( x)x1xA.1B.的正确结果为.1C.-1D.专业资料整理WORD格式x1x 19.计算(xxx)4x的正确结果是.x222x1B.111A.x2C.-D.-x 2x 2x 2知识点 22:二次根式的化简与求值y1. xy>0 ,化简二次根式*2的正确结果为.A.yB.yC.-yD.-y2.化简二次根式aa1的结果是.a2A.a 1B.-a 1C.a 1D.a 13.假设 a<b,化简
25、二次根式ab的结果是.aA.abB.-abC.abD.-ab4.假设 a<b,化简二次根式a(ab) 2的结果是.专业资料整理WORD格式aba专业资料整理WORD格式9A.aB.-aC.aD.a5. 化简二次根式x3的结果是.( x1)2xxB.xxxxxxA.1xC.xD.11 x1x6假设 a<b,化简二次根式aa(ab) 2的结果是.baA.aB.-aC.aD.a7 xy<0, 那么x2 y 化简后的结果是.A. x yB.- x yC. xyD. xy8假设 a<b,化简二次根式aa(ab) 2的结果是.baA.aB.-aC.aD.a9假设 b>a,化简
26、二次根式a2b的结果是.aA. aabB.aabC. aabD.aab10化简二次根式aa1.a 2的结果是A.a 1 B.-a 1 C. a 1D.a 111假设 ab<0,化简二次根式1a 2b3的结果是.aA.bbB.-bbC. bbD. -bb知识点 23:方程的根1当 m=时,分式方程2 xm3会产生增根 .x 24x 21x2A.1B.2C.-1D.22分式方程2x113的解为.x 24x2x2A.x=-2 或 x=0B.x=-2C.x=0D.方程无实数根3用换元法解方程x212(x1)50 ,设 x1=y,那么原方程化为关于y 的方程.x 2xx专业资料整理WORD格式10
27、A.y 2 +2y-5=0B.y 2 +2y-7=0C.y 2 +2y-3=0D.y 2 +2y-9=04方程 (a-1)x 2 +2ax+a2+5=0 有一个根是 x=-3 ,那么 a 的值为.A.-4B. 1C.-4 或 1D.4 或 -15关于 x 的方程ax1x1 0 有增根,那么实数a为.1A.a=1B.a=-1C.a=± 1D.a= 26二次项系数为1 的一元二次方程的两个根分别为-2- 3、2 - 3 ,那么这个方程是.A.x 2 +23 x-1=0B.x 2 +23 x+1=023 x-1=023 x+1=0C.x -2D.x -27关于 x 的一元二次方程 (k-3
28、)x2-2kx+k+1=0 有两个不相等的实数根,那么k 的取值X围是.专业资料整理WORD格式33A.k>-B.k>-22且 k 3C.k<- 3D.k> 3且 k322专业资料整理WORD格式知识点 24:求点的坐标1点 P 的坐标为 (2,2), PQ x 轴,且 PQ=2,那么 Q 点的坐标是.A.(4,2)B.(0,2) 或 (4,2)C.(0,2)D.(2,0)或 (2,4)2如果点 P 到 x 轴的距离为 3,到 y 轴的距离为 4,且点 P 在第四象限内 ,那么 P 点的坐标为.A.(3,-4)B.(-3,4)C.4,-3)D.(-4,3)3过点 P(1
29、,-2) 作 x 轴的平行线 l 1,过点 Q(-4,3) 作 y 轴的平行线 l2, l1、l2相交于点 A ,那么点 A 的坐标是.A.(1,3)B.(-4,-2)C.(3,1)D.(-2,-4)知识点 25:根本函数图像与性质11,y3)在反比例函数k.1假设点 A(-1,y 1)、B(-,y2)、C(y= (k<0) 的图象上,那么以下各式中不正确的选项是42xA.y 3<y1<y 2B.y 2+y 3<0C.y1+y 3<0D.y 1"y3"y2<02在反比例函数 y=3m 6的图象上有两点 A(x1,y1)、B(x2,y2),
30、假设 x2<0<x1 ,y1<y2,那么 m 的取值X围是.xA.m>2B.m<2C.m<0D.m>03 :如图 ,过原点 O 的直线交反比例函数y=2A 、B 两点 ,AC x 轴 ,AD y 轴 , ABC 的的图象于x面积为 S,那么.A.S=2B.2<S<4C.S=4D.S>44点 (x1,y1)、 (x2,y2) 在反比例函数 y=-2的图象上 , 以下的说法中:x图象在第二、四象限; y 随 x 的增大而增大 ;当 0<x1<x 2时 , y1<y 2;点(-x1,-y1) 、(-x2,-y2)也一定在此
31、反比例函数的图象上,其中正确的有个.A.1 个B.2 个C.3 个D.4 个5假设反比例函数yk有两个不同的交点A 、B ,且 AOB<90 o,那么 k 的取值X围的图象与直线 y=-x+2x必是.A. k>1B. k<1C. 0<k<1D. k<0专业资料整理WORD格式116假设点 ( m,1) 是反比例函数yn22n 1的图象上一点,那么此函数图象与直线y=-x+bmx|b|<2的交点的个数为.A.0B.1C.2D.47直线ykxb 与双曲线yk.交于 A x1,y1 ,B x2,y2两点 ,那么 x1· x2的值xA. 与 k 有关
32、,与 b 无关B. 与 k 无关,与 b 有关C.与 k、b 都有关D. 与 k、 b 都无关知识点 26:正多边形问题1一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形,那么另个一个为.A. 正三边形B.正四边形C.正五边形D. 正六边形2为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长一样的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,那么在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是.A.2,1B.1,2C.1,3D.3,13选用以下边长一样的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是.
33、A. 正四边形、正六边形B.正六边形、正十二边形C.正四边形、正八边形D.正八边形、正十二边形4用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.X师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是.A. 正三边形B.正四边形C. 正五边形D.正六边形5我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面 .某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料所有板料边长一样,假设从其中选择两种不同板料铺设地面,那么共有种不同的设计方案
34、 .A.2 种B.3 种C.4 种D.6 种6用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用以下边长一样的正多边形板料组合铺设,不能平整镶嵌的组合方案是.A. 正三边形、正四边形B.正六边形、正八边形C.正三边形、正六边形D.正四边形、正八边形7用两种正多边形形状的材料有时能铺成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能与正六边形组合镶嵌的是所有选用的正多边形材料边长都一样.A. 正三边形B. 正四边形C.正八边形D.正十二边形8用同一种正多边形形状的材料,铺成平整、无空隙的地面,以下正多边形材料,不能选用的是.A. 正三边形B. 正四边形C.正六边形D.正十二边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版学生校外住宿安全协议与住宿合同法律效力确认合同3篇
- 二零二五年度人力资源代理服务与劳务派遣协同合同3篇
- 2025年农业产业投资基金农资投资合同3篇
- 二零二五年度旅游服务合同违约责任及赔偿协议范本4篇
- 二零二五版旅游景区旅游信息化建设与维护服务合同4篇
- 二零二五年度企业财务报表编制与代理服务合同3篇
- 二零二五版淋浴房产品召回与质量责任合同4篇
- 2025年安全生产担保合同
- 2025年橙子电商批发专项供货合同范本4篇
- 2025年工业风险保险合同
- 中国末端执行器(灵巧手)行业市场发展态势及前景战略研判报告
- 北京离婚协议书(2篇)(2篇)
- 2025中国联通北京市分公司春季校园招聘高频重点提升(共500题)附带答案详解
- Samsung三星SMARTCAMERANX2000(20-50mm)中文说明书200
- 2024年药品质量信息管理制度(2篇)
- 2024年安徽省高考地理试卷真题(含答案逐题解析)
- 广东省广州市2024年中考数学真题试卷(含答案)
- 高中学校开学典礼方案
- 内审检查表完整版本
- 3级人工智能训练师(高级)国家职业技能鉴定考试题及答案
- 孤残儿童护理员技能鉴定考试题库(含答案)
评论
0/150
提交评论