初中数学中考动点问题集锦_第1页
初中数学中考动点问题集锦_第2页
初中数学中考动点问题集锦_第3页
初中数学中考动点问题集锦_第4页
初中数学中考动点问题集锦_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(2007年泰州市)如图5,RtABC中,B=90,CAB=30.它的顶点A的坐标为(10,0),顶点B的坐标为(5,53),AB=10,点P从点A出发,沿ABC的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒. (1)求BAO的度数. (2)当点P在AB上运动时,OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图6),求点P的运动速度. (3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标. (4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,OPQ

2、的大小随着时间t的增大而增大;沿着BC边运动时,OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使OPQ=90的点P有几个?请说明理由. (2007年吉林省)如图9,在边长为82cm的正方形ABCD中,E、F是对角线AC上的两个动点,它们分别从点A、C同时出发,沿对角线以1cm/s的相同速度运动,过E作EH垂直AC交RtACD的直角边于H;过F作FG垂直AC交RtACD的直角边于G,连结HG、EB.设HE、EF、FG、GH围成的图形面积为S1,AE、EB、BA围成的图形面积为S2(这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为x(s),解答下列问题: (1)当0

3、X(2)若y是S1与S2的和,求y与x之间的函数关系式; (图10为备用图) 求y的最大值. 练习1、已知抛物线经过及原点(1)求抛物线的解析式(由一般式得抛物线的解析式为)(2)过点作平行于轴的直线交轴于点,在抛物线对称轴右侧且位于直线下方的抛物线上,任取一点,过点作直线平行于轴交轴于点,交直线于点,直线与直线及两坐标轴围成矩形是否存在点,使得与相似?若存在,求出点的坐标;若不存在,说明理由(3)如果符合(2)中的点在轴的上方,连结,矩形内的四个三角形之间存在怎样的关系?为什么?练习2、如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B

4、落在边OA的点D处。已知折叠,且。(1)判断与是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由。Oxy练习2图CBED练习3、在平面直角坐标系中,已知二次函数的图象与轴交于两点(点在点的左边),与轴交于点,其顶点的横坐标为1,且过点和(1)求此二次函数的表达式;(由一般式得抛物线的解析式为)(2)若直线与线段交于点(不与点重合),则是否存在这样的直线,使得以为顶点的三角形与相似?若存在,求出该直线的函数表达

5、式及点的坐标;若不存在,请说明理由;CBA练习4图PyyCxBA练习3图(3)若点是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角与的大小(不必证明),并写出此时点的横坐标的取值范围O练习4 (2008广东湛江市) 如图所示,已知抛物线与轴交于A、B两点,与轴交于点C(1)求A、B、C三点的坐标(2)过点A作APCB交抛物线于点P,求四边形ACBP的面积(3)在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似若存在,请求出M点的坐标;否则,请说明理由练习5、已知:如图,在平面直角坐标系中,是直角三角形,点的坐标分别为,ACOBx

6、y(1)求过点的直线的函数表达式;点,(2)在轴上找一点,连接,使得与相似(不包括全等),并求点的坐标;(3)在(2)的条件下,如分别是和上的动点,连接,设,问是否存在这样的使得与相似,如存在,请求出的值;如不存在,请说明理由例1(2008福建福州)如图,已知ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t2时,判断BPQ的形状,并说明理由;(2)设BPQ的面积为S(cm2),求S与t的函数关系式;(3)作

7、QR/BA交AC于点R,连结PR,当t为何值时,APRPRQ?分析:由t2求出BP与BQ的长度,从而可得BPQ的形状;例2(2008浙江温州)如图,在中,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动设,(1)求点到的距离的长;(2)求关于的函数关系式(不要求写出自变量的取值范围);(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由例1(2000年上海)如图1,在半径为6,圆心角为90的扇形OAB的弧AB上,有一个动点P,PHOA,垂足为H,OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无

8、长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围).HMNGPOAB图1(3)如果PGH是等腰三角形,试求出线段PH的长.例2(2006年山东)如图2,在ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=. (1)如果BAC=30,DAE=105,试确定与之间的函数解析式; AEDCB图2 (2)如果BAC的度数为,DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.ABCO图8H例4(2004年上海)如图,在ABC中,BAC=90,AB=AC=,A的

9、半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,AOC的面积为.(1)求关于的函数解析式,并写出函数的定义域.(2)以点O为圆心,BO长为半径作圆O,求当O与A相切时,AOC的面积.(09年徐汇区)如图,中,点在边上,且,以点为顶点作,分别交边于点,交射线于点(1)当时,求的长; (2)当以点为圆心长为半径的和以点为圆心长为半径的相切时,求的长; (3)当以边为直径的与线段相切时,求的长在矩形ABCD中,AB3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把ABE沿直线l翻折,点A与矩形ABCD的对称中心A重合,求BC的长;ABCDEOlA(

10、2)若直线l与AB相交于点F,且AOAC,设AD的长为,五边形BCDEF的面积为S.求S关于的函数关系式,并指出的取值范围;探索:是否存在这样的,以A为圆心,以长为半径的圆与直线l相切,若存在,请求出的值;若不存在,请说明理由如图,在中,、分别是边、上的两个动点(不与、重合),且保持,以为边,在点的异侧作正方形.(1)试求的面积;(2)当边与重合时,求正方形的边长;(3)设,与正方形重叠部分的面积为,试求关于的函数关系式,并写出定义域;(4)当是等腰三角形时,请直接写出的长例1:已知O的弦AB的长等于O的半径,点C在O上变化(不与A、B)重合,求ACB的大小 .分析:点C的变化是否影响ACB的

11、大小的变化呢?我们不妨将点C改变一下,如何变化呢?可能在优弧AB上,也可能在劣弧AB上变化,显然这两者的结果不一样。那么,当点C在优弧AB上变化时,ACB所对的弧是劣弧AB,它的大小为劣弧AB的一半,因此很自然地想到它的圆心角,连结AO、BO,则由于AB=OA=OB,即三角形ABC为等边三角形,则AOB=600,则由同弧所对的圆心角与圆周角的关系得出:ACB=AOB=300,当点C在劣弧AB上变化时,ACB所对的弧是优弧AB,它的大小为优弧AB的一半,由AOB=600得,优弧AB的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:ACB=1500,例2:(2004年广州

12、市中考题第11题)如图,O1和O2内切于A,O1的半径为3,O2的半径为2,点P为O1上的任一点(与点A不重合),直线PA交O2于点C,PB切O2于点B,则的值为(A) (B) (C) (D)例4(2003年广州市中考试题)在O中,C为弧AB的中点,D为弧AC上任一点(与A、C不重合),则(A)AC+CB=AD+DB (B) AC+CBAD+DB (D) AC+CB与AD+DB的大小关系不确定例6:如图,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 .例8:如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点

13、B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动。如果、同时出发,用t秒表示移动的时间(0 t 6),那么:(1)当t为何值时,三角形QAP为等腰三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与ABC相似?例1. 在中,AC5,BC12,ACB90,P是AB边上的动点(与点A、B不重合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。(03年广州市中考)例2. 如图2,直角梯形ABCD中,ADB

14、C,B90,ADBCDC,若腰DC上有动点P,使APBP,则这样的点有多少个?例3. 如图5,ABC的外部有一动点P(在直线BC上方),分别连结PB、PC,试确定BPC与BAC的大小关系。(02年广州市中考)例1(2006年福建晋州)如图,在平行四边形ABCD中,AD=4cm,A=60,BDAD.一动点P从A出发,以每秒1cm的速度沿ABC的路线匀速运动,过点P作直线PM,使PMAD.1当点P运动2秒时,设直线PM与AD相交于点E,求APE的面积;2当点P运动2秒时,另一动点Q也从A出发沿AB的路线运动,且在AB上以每秒1cm的速度匀速运动,(当P、Q中的某一点到达终点,则两点都停止运动.)过

15、Q作直线QN,使QNPM,设点Q运动的时间为t秒(0t8),直线PM与QN截平行四边形ABCD所得图形的面积为S(cm2). (1)求S关于t的函数关系式;(2)求S的最大值.例2(2006年锦州市)如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),AOC=60,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).1.求A、B两点的坐标;2.设OMN的面积为S,直线l运动时间为t秒(0t6),试求S与t的函数表达式;3.在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少? 练习

16、1 (2006年南安市)如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB3,AD5若矩形以每秒2个单位长度沿x轴正方向作匀速运动同时点P从A点出发以每秒1个单位长度沿ABCD的路线作匀速运动当P点运动到D点时停止运动,矩形ABCD也随之停止运动求P点从A点运动到D点所需的时间;设P点运动时间为t(秒).练习2如图,边长为4的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DEOD,交边AB于点E,连接OE (1)当CD=1时,求点E的坐标;(2)如果设CD=t,梯形COEB的面积为S

17、,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由1、(09包头)如图,已知中,厘米,厘米,点为的中点(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?AQCDBP(2)若点Q以中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?3(09深圳)如图,在平面直角坐标系中,直线l:y=2x

18、8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作P.(1)连结PA,若PA=PB,试判断P与x轴的位置关系,并说明理由;(2)当k为何值时,以P与直线l的两个交点和圆心P为顶点的三角形是正三角形?解:(1)P与x轴相切.4(09哈尔滨) 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H (1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位秒的速度向终点C匀速运动,设PMB的面积为S(S0),点P的

19、运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当 t为何值时,MPB与BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值 解:5(09河北)在RtABC中,C=90,AC = 3,AB = 5点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止设点P、Q运动的时间是t秒(t0)ACBPQED图16

20、(1)当t = 2时,AP = ,点Q到AC的距离是 ;(2)在点P从C向A运动的过程中,求APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值ADCBMN7(09济南)如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动设运动的时间为秒(1)求的长(2)当时,求的值(3)试探究:为何值时,为等腰三角形8(09江西)如图1,在等腰梯形中,是的中点,过点作交于点,.(1)求点到的距

21、离;(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;ADEBFC图4(备用)ADEBFC图5(备用)ADEBFC图1图2ADEBFCPNM图3ADEBFCPNM(第25题)9(09兰州)如图,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动, 同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动, 设运动的时间为t秒(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动

22、时间t(秒)的函数图象如图所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由10(09临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,且EF交正方形外角的平行线CF于点F,求证:AE=EF经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以在此基础上,同学们作了进一步的研究:(1)小颖提出:

23、如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;ADFCGEB图1 (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由xyBOA11(09天津)已知一个直角三角形纸片,其中如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边交于点,与边交于点()若折叠后使点与点重合,求点的坐标;()若折叠后点落在边上的点为,设

24、,试写出关于的函数解析式,并确定的取值范围;()若折叠后点落在边上的点为,且使,求此时点的坐标 12(09太原)问题解决如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕当时,求的值图(1)ABCDEFMN方法指导:为了求得的值,可先求、的长,不妨设:=2例1 (2012嘉兴)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线ABDCA的路径运 动,回到点A时运动停止设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是()A B C D 1(2012内江)如图,正ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿ABC的方向运动,到达

25、点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A BC D(二)应用比例式建立函数解析式(或函数图像)例2 (2012攀枝花)如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2若动点E、F同时从点O出发,E点沿折线OAADDC运动,到达C点时停止;F点沿OC运动,到达C点是停止,它们运动的速度都是每秒1个单位长度设E运动秒x时,EOF的面积为y(平方单位),则y关于x的函数图象大致为()A B C D 例3 (2012桂林)如图,在ABC中,BAC=90,AB=AC=6,D为BC的中点(1)若E、F分别是AB、AC上的点

26、,且AE=CF,求证:AEDCFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式一、选择题1(2012烟台)如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与A,B重合)过Q作QMPA于M,QNPB于N设AQ的长度为x,QM与QN的长度和为y则能表示y与x之间的函数关系的图象大致是()A BC D 2(2012鞍山)如图,在直角梯形ABCD中,ADBC,A=90,AB=BC=4

27、,DEBC于点E,且E是BC中点;动点P从点E出发沿路径EDDAAB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,PBC的面积为S,则下列能反映S与t的函数关系的图象是()A BC D 3(2012巴中)如图,点P是等边ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,ACP的面积为S,则S与t的大致图象是()A BC D 4(2012佳木斯)如图所示,四边形ABCD是边长为4cm的正方形,动点P在正方形ABCD的边上沿着ABCD的路径以1cm/s的速度运动,在这个运动过程中APD的面积s(cm2)随时间t(s)的变化关系用

28、图象表示,正确的是 ()A B C D 5(2012温州)如图,在ABC中,C=90,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B已知P,Q两点同时出发,并同时到达终点,连接MP,MQ,PQ在整个运动过程中,MPQ的面积大小变化情况是()A一直增大B一直减小C先减小后增大D先增大后减少6(2012绥化)如图,点A、B、C、D为O的四等分点,动点P从圆心O出发,沿OCDO的路线做匀速运动,设运动的时间为t秒,APB的度数为y度,则下列图象中表示y(度)与t(秒)之间函数关系最恰当的是()A BC D 7(2012北京)小翔在如图1所示

29、的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒他的教练选择了一个固定的位置观察小翔的跑步过程设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个个定位置可能是图1中的()A点MB点NC点PD点Q8(2012六盘水)如图为反比例函数在第一象限的图象,点A为此图象上的一动点,过点A分别作ABx轴和ACy轴,垂足分别为B,C则四边形OBAC周长的最小值为()A 4B3C2D1二、填空题9(2012张家界)已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形A

30、PE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为 三、解答题10(2012扬州)已知抛物线y=ax2+bx+c经过A(1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由11(2012佳木斯)如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,ABOC,AOC=90,BCO=45,BC=12,点C的坐标为(1

31、8,0)(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由12(2012铁岭)如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D直线y=2x1经过抛物线上一点B(2,m)且与y轴交于点C,与抛物线的对称轴交于点F(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若SADP=SADC,求出所有符合条件的点

32、P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由13(2012乐山)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C已知实数m、n(mn)分别是方程x22x3=0的两根(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD当OPC为等腰三角形时,求点P的坐标;求BOD 面积的最大值,并写出此时点D的坐标14(2012衢州)如图,把两个全等的RtAOB和RtCOD分别置于平面直角坐标系中,使直角边OB、OD在x轴上已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F抛物线y=ax2+bx+c经过O、A、C三点(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由(3)若AOB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论