

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品资料欢迎下载Problems using Cauchy-Schwarz in equality.Problem 1. (Jack Garfu nkel)For non-n egative nu mbers a,b,c , prove the in equality+c Jo+b + cy/a + b Qb + c y/c +a 4Solutio n.Using the Cauchy-Schwarz in equality, we haveI V .a= V Ja(5a + b + 9c)住;V+ & + 9c) | V- -曲+b丿轻+b + k)丿I士+叭+E9C丿/x=5(a
2、+ /i + c)2Y- -+ b +阿丿Thus, one only n eeds to prove(fl +h + c) V-I 一 ; :心Problem 2. (Vo Quoc Ba Can)For non-negative numbers a,b,c with sum equal to 1, prove thatSolutio n.Using the Cauchy-Schwarz in equality, we have精品资料欢迎下载f _y_y y!a + i2=V4(7 + 4b+c JIQV=9工 + =4a + 4b+cI a +bAa + 4b+ca(a + &
3、+C)+/J-乙Aa + Ab + c吃心吨止去IThus,onert(i7 +Z? + C)+ &4n + 46 + c121r(n +& + c)We have16辽y + 3003工亍护+19巧工725工为+10920工口 $处yp _ yq- _护砂听砂即_25(46/ + 4ZJ+C)(4Z? + 4c + a)(4c + 4a + b)fA163工/ +11工盯备一石工日饬一石工/加25(4(7 + 4b + e)(4? + 4-C + 7)(4c + 4a +b)A= 1210工柑 + 吨少 +233工叔+118980% 0eyeWe prove工t/ +11工口
4、万一6工n咕一6工/加0QC-工Xb +12工/,一工口沅Q-工0胡-工住漩0eyeeWe haveQT砂厶CJC精品资料欢迎下载Vn2&c = V i- Ibc)2orTherefore the in equality is equivale nt to丄(-b2)1+ 2(ab ac- 2bc)2-2,(口 -b1)(ab + ac - 2bc) 0eyeeye砂O工(用b:-2ab-lac + 4bc)20-砂Last in equality is obviously true so the result follows. Equality does not hold.Probl
5、em 3. (Vo Quoc Ba Can)For non-n egative nu mbers a,b,c, prove thatajb2+4r:+bjc,+4a +c7n2+4fc2QO 3(c + 5乃)15a11+10f7i + 3d2)(a -b)2-Ac0班酹+4)+ / + 5rr=工(,- bXob + g - 2珈)SiortycJ3ii + b + 5(?=3(rt + + r)2区0精品资料欢迎下载whereA 69n4+ (536&18c)d3一(410, +410he + 306c2)o2+ (536iJ 410&2e + 436bc2+ 165c3)
6、fl +165&4-3O6bJc-18&2c2+69tes+45c4Using the assumption fH):(UCit is easy to prove that?:- .The resultfollows, equality holds if and only if Problem 4.For positive nu mbers a,b,c, prove thato4b4c4. a + b + c - r + :-7 +- r -73+&3ft5+R,+ fp 2Solutio n.ab5+bF +m3(A+ fe + r)(5+ feJ+o力+&2
7、c3+cc)We havea2b + b2c5+c ai= (ab + ca)ab +bc2+ca)- abc(a2+c +ab + bc + ca)Ctb + be + CO j j 31,71,、=-(ab +bc +ca +ab + be +ca +abc(a + b十(?)a + b + c-abc(a2+b2+c +ab + bc + ca)Clb + be + C13J32,7, t 2,丁、A丿 *J=-(ab + he +ca +ab +bc +c a)-abc(a +b +c )a + b + c(lb + bC + CCI f 1 . 2 , 1 id 2,. 1 - t
8、t.J2 t 1r、-a +b +c) +ab +bc +ca -abc(a +Zr +c) =JThus, one only n eeds to prove| (a2+b2+c2)2+a2b- +bc ca2abc(a + b + az+b:+ c1)Without loss of gen erality, no rmalize the in equality by 亠JL let1 .ab-bc + ca= abc (0 q V) (iT + fr + cXn5十沪 + 疋)十(加十比十w精品资料欢迎下载Then we have -2727equivale nt-to一._.-27It i
9、s clear that,厂 _、一 一 - 厂J.is an increasing function in r , we should haveIn equality is completely proved. Equality occurs if and only if,; 一 一Problem 5. (Phan Thanh Nam) _ V 3For the non-n egative nu mbers a,b,c with sum equal to 1. Letprove thatyja + k(b-c)1+ Jb+迩 -o),+Qc:k(a -b) V3Solutio n.Using
10、 the Cauchy Schwarz in equality,护a + -*O+F54|七十拧(1 2叫 * 聞-J(l+(l-2g)(1+ (70The in equality isyf打71a+k(b-c)2a +J 3丿1O + LV3丿耳a + (b-c)2工Y)2(b-FV3J精品资料欢迎下载(A+b(a +lx2(a 4-Zn-c)(1 +方)(止 +cXr+ff)So, we have to provea + b + c(a + &)(d + r)(c+ a)Za(b+ c)+&+(?+ 3ab + 3bc+ 3fo)2- +3-e a -bc-(a + b)(
11、!?+ 0Without loss of generality, assume门一- : then we have工他一时 S-切2, 、HJ_+(b c)(d + i + c) J(a-b)(b-c)( (1a -ha +bc(方十+ & + c);bc(a-b)(a + b)(b-c)(a -b -ab + ac + be)=- i-:-i-3 0b(fl十bc)(lr + ca)(a + c)(b十e)(灯 +h+ c)- - - -+cf? (c + a)(q + b + c)9(2 + J3一g(6q +巧)冬3(2 +巧丄_g(6g +巧)=g(3g 1)屈M0, 1Equality occurs if and only if;一;:or一 一 一and its permutatio nsProblem 6. (Vo Quoc Ba Can)For positive nu mbers a,b,c, prove
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 激励股权授予协议书
- 2024高校辅导员招聘考察内容试题及答案
- 临床患者体验与满意度试题及答案
- 实验委托协议书附件
- 轮胎代理协议书模板
- 教师聘用协议书无效
- 劳务派遣延期协议书
- 2024年花艺师多元文化的影响与考题试题及答案
- 市政二级实务试题及答案
- 招聘辅导员能力测评题目试题及答案
- 物业管理之工程管理
- 生态农业发展与绿色金融的融合路径
- 附着龈重建在口腔种植修复中的应用探索
- 《欧式田园风》课件
- 2024年德州市人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 订单与合同管理制度
- 【MOOC期末】《英美文学里的生态》(北京林业大学)期末中国大学慕课MOOC答案
- 外科患者疼痛护理与管理
- 《家校社协同育人“教联体”工作方案》专题培训
- 《异常子宫出血诊断与治疗指南(2022版)》解读
- 2024年六西格玛黄带认证考试练习题库(含答案)
评论
0/150
提交评论