版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、考点一、圆的相关概念1、圆的定义2、圆的几何表示:以点0为圆心的圆记作0”,读作“圆0” 考点二、弦、弧等与圆有关的定义(1)弦 连接圆上任意两点的线段叫做弦。(如图中的(2)直径经过圆心的弦叫做直径。(如途中的CD)(3)半圆(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“c”表示,以A,B为端点的弧记作“诊”AB” 或“弧AB”。大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两 个字母表示)考点三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(2)弦的
2、垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为:过圆心垂直于弦直彳径 平分弦I知二推三平分弦所对的优弧I平分弦所对的劣弧考点四、圆的对称性1、圆的轴对称性2、圆的中心对称性:圆是以圆心为对称中心的中心对称图形。考点五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角:顶点在圆心的角叫做圆心角。2、弦心距:从圆心到弦的距离叫做弦心距3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心 距相等。推论:在同圆或等圆中,
3、如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心 距中有一组量相等,那么它们所对应的其余各组量都分别相等。考点六、圆周角定理及其推论1、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧 也相等。AB)读作“圆弧AC推论2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角 形。考点七、点和圆的位置关系设。O的半径是r,点P到圆心0的距离为d,则有:dr点P在O0夕卜。 考点八、过三点的圆1、过三点的圆:不在同一直线上的三个点确定一个圆。
4、2、三角形的外接圆:3、三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。考点九、直线与圆的位置关系直线和圆有三种位置关系,具体如下:如果。0的半径为r,圆心0到直线I的距离为d,那么:直线I与。0相交=dr; 考点十、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在。0中,四边ABCD是内接四边形二C BAD =180B D =180考点一、切线的性质与判定定理1、切线的判定定理: 过半径外端且垂直于半径的直线是切线;两个条件:2、性质定理:推论1:推论2:以上三个定理及推论
5、也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个 条件就能推出最后一个。考点十二、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆 心的连线平分两条切线的夹角。即:PA、PB是的两条切线 PA=PB;P0平分N BPA考点十三、圆幕定理1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。 即:在。0中,弦AB、CD相交于点P,过半径外端且垂直半径,二者缺一不可即:MN _0A且MN过半径0A外端MN是。0的切线切线垂直于过切点的半径(如上图) 过圆心垂直于切线的直线必过切点。 过切点垂直于切线的直线必过圆心。 PA PB二PC PD推论:
6、如果弦与直径垂直相交,那么弦的一半是它分直径 所成的两条线段的比例中项。即:在OO中,直径AB丄CD, CE2=AE BE2、切割线定理:从圆外一点引圆的切线和割线,切线长是 这点到割线与圆交点的两条线段长的比例中项。即:在。O中,:PA是切线,PB是割线3、割线定理:从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等(如右图)。即:在OO中,:PB、PE是割线 PC PB = PD PE考点十四、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:O1O2垂直平分AB。二 O1O2垂直平分AB考点十五、圆的公切线 两圆公切线长的计算公式:(
7、1) 公切线长:RLQQ2C中,AB2二CO,2- QO-COz2;(2) 外公切线长:CO2是半径之差; 内公切线长:CO2是半径之和考点十六、三角形的内切圆和外接圆1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。2、三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,考点十七、圆和圆的位置关系1、 圆和圆的位置关系2、圆心距3、圆和圆位置关系的性质与判定设两圆的半径分别为R和r,圆心距为d,那么两圆外离二dR+r两圆外切二d=R+r两圆相交=R-rvdvR+r(Rr)两圆内切=d=R-r(Rr)PA2=PC PB即:TOOi、OO2相交于A、B两点EBCO1O2A
8、C两圆内含=dr)4、两圆相切、相交的重要性质如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的 连心线;相交的两个圆的连心线垂直平分两圆的公共弦。考点十八、圆内正多边形的计算1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就 是这个正多边形的外接圆。3、正三角形在。O中ABC是正三角形,有关计算在RtB O中进行:O D: B D O B1T 3 : 2正四边形 同理,四边形的有关计算在 Rt:OAE 中进行,OE : AE : OA= 1:1:2:正六边形同理,六边形的
9、有关计算在RtOAB中进行,考点二十、正多边形的对称性1、正多边形的轴对称性、中心对称性注:边数为偶数的正多边形是中心对称图形,考点二十一、弧长和扇形面积1、弧长公式n的圆心角所对的弧长I的计算公式为I二n1802、 扇形面积公式S 扇nR2-丄 IR360213、 圆锥的侧面积S =I=二 rl2其中I是圆锥的母线长,r是圆锥的地面半径。考点二十二、内切圆及有关计算。(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。(2)AABC中,/C=90,AC=b BC=a AB=C则内切圆的半径r=a+b_c21(3)SABC=-r(a b c),其中a,b,c是边长,r是内切圆的
10、半径24、5、ODAB:OB:OA = 1:、3:2.BAC精选考题考点一:与圆相关概念的应用?1.运用圆与角(圆心角,圆周角),弦,弦心距,弧之间的关系进行解题例如图,A、B、C 是OO 上的三点,/ AOC=100,则/ ABC 的度数为(???)?A. 30?B. 45?C. 50?D. 60?2.利用圆的定义判断点与圆,直线与圆、圆与圆的位置关系【例 3】 已知OO 的半径为 3cm, A 为线段 0M 的中点,当 0A 满足:(1 )当 0A=1cm 时,点 M 与O0 的位置关系是 ?.?(2)当 0A=1.5cm 时,点 M 与O0 的位置关系是 ?.?( 3)当 0A=3cm
11、时,点 M 与O0 的位置关系是 ?.【例 4】O0 的半径为 4,圆心 0 到直线丨的距离为 3,则直线丨与O0 的位置关系是(?)?A.相交?B.相切?C.相离???D.无法确定【例 5】 两圆的半径分别为 3cm 和 4cm,圆心距为 2cm,那么两圆的位置关系是 _ ,?3.正多边形和圆的有关计算【例 6】 已知正六边形的周长为72cm,求正六边形的半径,边心距和面积4.运用弧长及扇形面积公式进行有关计算【例 7】 如图,矩形 ABCD 中,BC=2, DC=4,以 AB 为直径的半圆 0 与 DC 相切于点 E, 则阴影部分的面积为???(结果保留:).5.运用圆锥的侧面弧长和底面圆
12、周长关系进行计算【例 8】已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径长的比 是?.考点二:圆中计算与证明的常见类型1.利用垂径定理解题?垂径定理及其推论中的三要素是:直径、平分、过圆心 2.利用“直径所对的圆周角是直角”解题?【例 2】 如图,在O0 的内接 ABC 中,CD 是 AB 边上的高,求证:/ ACD=/ 0CB.3.利用圆内接四边形的对角关系解题?圆内接四边形的对角互补【例 3】 如图,四边形 ABCD 为圆内接四边形,E 为 DA 延长线上一点,若/ C= 45 , AB= .2,则点 B 到 AE 的距离为_ .4.判断圆的切线的方法及应用?判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;? ( 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年核苷类药物项目提案报告范文
- 2024-2025学年邢台市巨鹿县数学三上期末考试模拟试题含解析
- 2024-2025学年新疆维吾尔昌吉州奇台县数学三年级第一学期期末达标检测模拟试题含解析
- 去药厂实习报告范文汇编5篇
- 2024-2025学年西安市碑林区三上数学期末学业质量监测试题含解析
- 2024年版企业劳动合同及员工劳动保障合同版B版
- 2025年板卧式电除尘器项目规划申请报告模范
- 2024年期多边投资补偿协议样本一
- 大学实习报告范文合集10篇
- 暑假银行实习报告汇编十篇
- 灯检检漏一体机安装、运行和性能确认方案
- 《汉字真有趣》ppt课件完美版
- 三级创伤急救中心建设方案
- 北风和小鱼 (3)
- 消防设施验收移交单
- 塔式起重机塔吊安全管理
- 教师教学质量评估表(学生用)
- 中国各大煤矿煤炭指标
- 浙美版1-6年级美术作品与作者整理
- 国内外有关生产流程优化研究发展现状
- 高标准基本农田土地整治项目工程施工费预算表
评论
0/150
提交评论