版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-?向量的数乘运算及几何意义?教学设计温江二中 何汝兵一、教材分析:向量具有丰富的实际背景和几何背景,向量既有大小,又有方向.但是引进向量,而不研究它的运算,则向量只是起到一个路标的作用;向量只有引进运算后才显得威力无穷.本章从第二节开场学习向量的加法、减法运算及其几何意义;本节接着学习向量的数乘运算及其几何意义.向量数乘运算以及加法、减法统称为向量的三大线性运算,向量的数乘运算其实是加法运算的推广及简化.教学时从加法入手,引入数乘运算,充分表达了数学知识之间的在联系.实数与向量的乘积仍然是一个向量,既有大小,又有方向.特别是方向与向量是共线向量,进而引出共线向量定理.这样平面任意一条直线就可
2、以用点A和*个向量表示了.共线向量定理是本章节的重要的容,应用相当广泛,且容易出错,尤其是定理的前提条件:向量是非零向量.共线向量的应用主要用于证明点共线或线平行等,且与后学的知识有着密切的联系.二、学情分析:学生在已经学习了近一学期的高中课程容后,在思想和思维模式上已经适应了高中的课程和高中的教学方式。学生能适应自主探究、师生互动的学习方式,动手操作能力强,勇于创新,敢于发表自己的见解。只要教师创设情境合理,精心设计问题串,循序渐进层层深入,学生能很快地构建起新的数学知识,教师只要作必要的归纳,就会帮助学生上升到理性认识的层面。同时为了更熟练地掌握知识和应用知识,需加强学生的课堂练习。三、教
3、学目标:1、知识与技能 通过经历探究数乘运算法则及其几何意义的过程,掌握实数与向量积的定义;理解实数与向量积的几何意义;掌握实数与向量积的运算律。2、过程与方法通过师生互动理解两个向量共线的等价条件,能够运用两向量共线条件判断两向量是否平行,进而判定点共线或直线平行。3、情感态度与价值观通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法从特殊到一般、分类讨论、转化化归、观察、猜想、归纳、类比、总结等;培养创新能力和积极进取精神;通过具体问题,体会数学在实际生活中的重要作用。四、教学重难点教学重点:1理解并掌握向量数乘的定义及几何意义;2熟练地掌握和运用实数与向量积的运算律;3掌握向量
4、共线定理,会判定或证明两向量共线。教学难点:对向量共线的等价条件的理解以及运用。五、教具选取三角板、投影仪、多媒体辅助教学。六、教学根本流程实例引入探究:观察、发现和类比向量数乘运算的定义及其几何意义口答题、练习题向量数乘运算律及其几何意义例1及稳固练习练习共线向量定理例3、例4讲解归纳总结变式一、变式二讲解例2讲解课堂作业课堂小结作业布置七、教学过程教学环节教学容教师活动学生活动设计意图复习回忆向量的加法、向量的减法教师提问学生答复复习回忆,引发新知引入新课非零向量,作出+和+想一想:它们的大小和方向有什么变化.学生作图,观察并思考认识和理解向量数乘的几何意义必须从几何直观入手,即通过让学生
5、自己作图,以及独立观察、思考,让学生对向量的伸缩有一个初步的感性认识,进而为下一步对向量的数乘的定义及其几何意义的理性认识作好铺垫。新课讲解实数与向量的积的定义:一般地,实数与向量的积是一个向量,记作,它的长度与方向规定如下:1;2当时,的方向与的方向一样;当时,的方向与的方向相反;当时,问题1:请大家根据上述问题并作一下类比,看看怎样定义实数与向量的积.小组合作交流,学生单独作答通过引出向量的数乘的定义,让学生体会从特殊到一般的思想方法问题2:你能说明它的几何意义吗.小组合作交流,学生单独作答从从直观入手,从具体开场,逐步抽象。通过师生互动,得到向量数乘的几何意义是把向量沿的方向或反方向伸长
6、或缩短倍。说一说:抽学生答复,并指出其几何意义通过简单口答题来稳固学生对向量数乘的理解及应用,同时渗透几何问题向量化的一种思考方式。练一练:教材P90 练习2、3题学生单独作答从心理学认为:概念一旦形成,必须及时稳固实数与向量的积的运算律:1结合律;2第一分配律;3第二分配律问题4:数的运算和运算律是严密相连的,运算律可以有效地简化运算。类比数的乘法的运算律,你能说出数乘的运算律吗.小组交流探讨数学中引进一个新的量自然要看看它的运算及其运算律的问题。向量运算可以与学生熟悉的数的运算进展类比,从中得到启发。而书的运算和运算律是严密相连的,运算律可以有效的简化运算。类比数的乘法的运算律引出数乘向量
7、的运算律。问题5:你能解释上述运算律的几何意义吗.小组交流探讨例1 计算:1;2;3提问、及时评价独立完成,单独答复从心理学认为:概念一旦形成,必须及时稳固,通过例1加深学生对数乘向量运算律的理解。练一练教材P90 练习5题学生单独作答及时练习,及时稳固,反响学生的学习情况向量的加、减、数乘运算统称为向量的线性运算。对于任意的向量,以及任意实数,恒有本节作为向量线性运算的最后一节,有必要综合认识向量线性运算。对于向量、,如果有一个实数,使,则由向量数乘的定义知与共线,且向量是向量模的倍,而的正负由向量、的方向所决定.反过来,向量与共线,且向量的长度是向量的长度的倍,即,则当与同方向时,有;当与
8、反方向时,有.从上述两方面可知板书共线向量定理:向量、共线,当且仅当有一个实数,使得.问题6:引入数乘向量后,你能发现数乘向量与原向量的位置关系吗.思考: 1) 为什么要是非零向量?2) 可以是零向量吗?3) 怎样理解向量平行.与两直线平行有什么异同.合作交流,独立作答.师生共同活动引出向量共线的定理;引导学生理解向量共线只需看这两个向量的方向一样或是相反,在向量的前提下,向量、共线,当且仅当有一个实数,使得;且实数的唯一性是由向量和的模和方向同时决定.通过学生合作交流,促进学生合作的集体意识;通过学生独立作答,提高学生分析问题、解决问题的能力.练一练教材P90练习题4题学生单独作答从心理学认
9、为:概念一旦形成,必须及时稳固引导学生思考学生思考作答共线向量定理的应用一:判断两向量是否共线引导学生思考学生思考作答共线向量定理的应用二:判断三点共线引导学生思考学生思考作答共线向量定理的应用三:判断直线平行例3.如图,任意两个向量试作出你能判断A、B、C三点之间的位置关系吗.为什么.引导学生思考学生思考作答这道例题是先让学生猜想,再证明;利用向量共线证明点共线,具体方法是先证明向量共线,再证明向量有公共点;进而引出利用向量共线证明直线平行.例4.如图,ABCD的两条对角线相交于点M,且,你能用表示吗.引导学生思考学生思考作答综合运用向量的加、减、数乘等向量的线性运算.使学生明确:有了向量的
10、线性运算,平面中的点、线段直线就可以得到向量表示,这是利用向量解决几何问题的重要步骤.课堂小结一、 的定义及运算律; 向量共线定理, 向量与共线.二、 定理的应用:1 证明向量共线;2 证明三点共线;A、B、C三点共线;3 证明两直线平行:直线AB直线CD.三、你体会到了那些数学思想.引导学生体会本节学习中用到的思想方法:特殊到一般,归纳,猜想,类比,分类讨论,等价转化.1.知识性容的总结,可以把课堂教学传授的知识尽快转化为学生的素质.2.运用数学方法,创新素质的小结能让学生更系统,更深刻地理解数学理想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质.3.由学生口头表述,不仅可以提高学生的综合概括能力,还能提高学生的口头表达能力.课后作业教材P9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语教师实习总结怎么写
- 2022收看开学第一课心得体会启迪
- 应急管理火灾
- 保险理赔个人工作总结
- 宪法第八版课件
- 人文知识竞赛策划书
- 建团100周年演讲稿征文五篇
- 教师实习总结15篇
- 管理学顶岗实习报告600字
- 小学语文教学心得体会合集15篇
- 人工智能导论智慧树知到期末考试答案章节答案2024年哈尔滨工程大学
- 2024-2034年中国云南白药行业市场现状分析及竞争格局与投资发展研究报告
- 单位食堂供餐方案(2篇)
- 语文 职业模块口语交际教学设计示例(打商务电话)
- 数据安全事件的溯源与责任追究
- 2022课程方案试题
- 中国文化-古今长安(双语)智慧树知到期末考试答案章节答案2024年西安欧亚学院
- 苏教译林版五年级上学期英语第七单元Unit7《At weekends》测试卷(含答案解析)
- 丝氨酸蛋白酶在代谢性疾病中的作用
- 纪念与象征-空间中的实体艺术 课件-2023-2024学年高中美术人美版(2019)美术鉴赏
- 河北钢铁集团沙河中关铁矿有限公司矿山地质环境保护与土地复垦方案
评论
0/150
提交评论